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Let A be a (left and right) noetherian ring throughout the notes unless otherwise
stated.

1 Conventions and Basic Notions

Definition 1.1. [Sta, Tag 03RU] Let F be a sheaf of (left) A-modules.

1. We say F is the constant sheaf with value M if F is the sheafification of the
presheaf U 7→M , where M is an A-module, denoted by MX or M .

2. We say F is a constant sheaf if it is isomorphic as a sheaf of A-modules to a
sheaf as in 1.

3. We say F is locally constant if there exists a covering {Ui → X} such that
F|Ui is a constant sheaf.

Definition 1.2. A sheaf of A-modules on Xét is constructible if for every affine open
U ⊂ X there exists a finite decomposition of U into constructible locally closed
subschemes U =

∐
i Ui such that F|Ui is of finite type and locally constant for all i.

Here a subset Y of a topological space is said to be constructible if there is a finite
disjoint decomposition Y =

∐
i(Ui ∩ V c

i ), where Ui, Vi are open and retrocompact
subsets of X (“retrocompact” means that the embeddings Ui, Vi ↪→ X are quasi-
compact.)

We say a sheaf F of A-modules on X is flat if the stalks of F at all geometric
points of X are flat A-modules. This is equivalent to saying that the functor F ⊗A
is exact in the category of sheaves of A-modules.

The following is a list of notations we will use in the sequel.

1. Sh(X,A) is the category of sheaves of A-modules on Xét .

2. C(X,A) is the category of complexes of sheaves of A-modules on Xét.

3. K(X,A) is the homotopy category of complexes of sheaves of A-modules on
Xét.

4. D(X,A) is the derived category of complexes of sheaves of A-modules on Xét.

For the notion of derived category we will give a further explaination in one of the
following sections.
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2 Some Functors on Sheaves

In this section we explain some functors and derived functors in étale cohomology.
Let f : X → Y be a morphism of schemes. We have seen the functor Γ of taking

global sections and direct image functor f∗. They are both left exact functors, and
we have also seen their right derived funtors RΓ and Rf∗ from Sh(X,A) to Sh(Y,A).

We define the inverse image functor f−1 : Sh(Y,A) → Sh(X,A) (also denoted
by f∗, these two notations are the same in étale cohomology) is defined to the sheaf
associated to the presheaf sending each (U → X) to

colim(V,φ)∈IF(V )

where I is such a category whose objects are pairs (V, φ), where (V → X) is an
object of Yét and φ : U → V is a Y -morphism, and a morphism (V1, φ1) to (V2, φ2)
is a Y -morphism ψ : V1 → V2, such that φ2 = ψφ1.

If Y is a quasi-compact quasi-separated scheme and f is separated of finite type,
then we can define a funtor f! : Sh(X,A)→ Sh(Y,A) in the following way. For any
sheaf F in Sh(X,A), and any object U in Yét, let

f!F(U) = {s ∈ F(U ×Y X) : the support of s is proper over U}.

This is indeed a sheaf, see for example section 5.5 in [Fu11]. We have a canonical
monomorphism f!F → f∗F . If f is proper we have f! = f∗. The functor f! can also
be defined in a different way when f is an étale morphism, see Section 5.5 in [Fu11],
but it coincides with the defintion we give above.

Remark 2.1. If f is étale , then f! is exact and faithful, and for any morphism
g : Y ′ → Y , if we let X ′ = X ×Y Y ′ and f ′ : X ′ → Y ′, g′ : X ′ → X the canonical
projection, then we have g−1f!F = g′!f

′−1F . See Proposition 5.5.1 in [Fu11] for the
proof.

If f : X → Y is a closed immersion, then the functor f∗ has a right adjoint (see
section 5.4 in [Fu11]), which we will take as a definition of f ! : Sh(Y,A)→ Sh(X,A),
thanks to the uniqueness of adjoint functors. The functor f ! is also left exact, so we
have the derived functor Rf ! : Sh(Y,A) → Sh(X,A). We shall not use f ! and Rf !

in the formulation of Lefschetz trace formula.

3 Derived Categories

This section is mostly a complete copy from [Sta, Tag 03T3] in Stacks Project.
To set up notation, let A be an abelian category. Let Comp(A) be the abelian cate-
gory of complexes inA. LetK(A) be the category of complexes up to homotopy, with
objects equal to complexes in A and objects equal to homotopy classes of morphisms
of complexes. This is not an abelian category. Loosely speaking, D(A) is defined to
be the category obtained by inverting all quasi-isomorphisms in Comp(A) or, equiva-
lently, inK(A). Moreover, we can define Comp+(A),K+(A), D+(A) analogously us-
ing only bounded below complexes. Similarly, we can define Comp−(A),K−(A), D−(A)
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using bounded above complexes, and we can define Compb(A),Kb(A), Db(A) using
bounded complexes.

Remark 3.1. Notes on derived categories.

1. There are some set-theoretical problems when A is somewhat arbitrary, which
we will happily disregard.

2. The categories K(A) and D(A) may be endowed with the structure of tri-
angulated category, but we will not need these structures in the following
discussion.

3. The categories Comp(A) and K(A) can also be defined when A is an additive
category.

The homology functor H i : Comp(A)→ A taking a complex K• 7→ H i(K•) extends
to functors H i : K(A)→ A and H i : D(A)→ A.

Lemma 3.1. An object E of D(A) is contained in D+(A) if and only if H i(E) = 0
for all i� 0. Similar statements hold for D− and D+.

Proof. Hint: use truncation functors. See Derived Categories, Lemma ??.

Lemma 3.2. Morphisms between objects in the derived category.

1. Let I• ∈ Comp+(A) with In injective for all n ∈ Z. Then

HomD(A)(K
•, I•) = HomK(A)(K

•, I•).

2. Let P • ∈ Comp−(A) with Pn is projective for all n ∈ Z. Then

HomD(A)(P
•,K•) = HomK(A)(P

•,K•).

3. If A has enough injectives and I ⊂ A is the additive subcategory of injectives,
then D+(A) ∼= K+(I) (as triangulated categories).

4. If A has enough projectives and P ⊂ A is the additive subcategory of projec-
tives, then D−(A) ∼= K−(P).

Proof. Omitted.

Definition 3.1. Let F : A → B be a left exact functor and assume that A has
enough injectives. We define the total right derived functor of F as the functor
RF : D+(A)→ D+(B) fitting into the diagram

D+(A)
RF // D+(B)

K+(I)

OO

F // K+(B).

OO
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This is possible since the left vertical arrow is invertible by the previous lemma. If
moreover, RF has finite cohomological dimension, then RF can be extended to a
morphism from D(A) to D(B). Here we say RF has finite cohomological dimension
if there exists an integer n such that RiF (X) = 0 for all i > n and all objects X in A.
In particular, if F is exact, then we have a total derived functor RF : D(A)→ D(B).

Similarly, let G : A → B be a right exact functor and assume that A has
enough projectives. We define the total left derived functor of G as the functor
LG : D−(A)→ D−(B) fitting into the diagram

D−(A)
LG // D−(B)

K−(P)

OO

G // K−(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.

Remark 3.2. From the definition of the total right derived functor and total left
derived functor, we see that they both coincide with the usual right derived functors
and the usual left derived funtors since an object in an abelian category A can be
seen as an object in its derived category D(A) (or D+, or D−, or Db) in the obvious
way. So we may just call a total right derived functor a right derived functor. Same
for total left derived functor.

So far, for a morphism f : X → Y of schemes, we have the following derived
functors.

1. RΓ : D+(X,A) → D+(A), where D+(A) is the derived category of bounded
below complexes of A-modules;

2. Rf∗ : D+(X,A)→ D+(Y,A);

3. f−1 : D(Y,A)→ D(X,A);

4. f! : D(X,A)→ D(Y,A) if f is étale .

Remark 3.3. The functor f−1 is left adjoint to Rf∗.

We will define the total derived functors Rf! and f !, after we have introduced
the properly supported cohomology in the next section. To end up this section, we
state the following useful lemma and apply it to some of the derived funtors we have
defined above.

Lemma 3.3. Let A,B, C be abelian categories, and F : A → B, G : B → C left
exact functors. Assume A,B have enough injectives. If F (I) is right acyclic for G
(i.e., RiG(F (I)) = 0, for all i > 0) for each injective object I in A, Then we have
an isomorphism

R(G ◦ F )
'−→ RG ◦RF

for functors from D+(A) to D+(C).
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Example 3.1. Let f : X → Y be a morphism of schemes. Then for any K ∈
D+(Y,A), there is a canonical map Hi(Y,K)→ Hi(X, f−1K) for each i. To see this,
we apply the previous lemma to the following composition of functors

Sh(X,A)
f∗−→ Sh(Y,A)

Γ−→ Mod(A),

where Mod(A) is the category of A-modules, and get an isomorphism

RΓ ◦Rf∗ = RΓ.

Take values in f−1K on both sides of the equation, and then take the i-th cohomol-
ogy we get an isomorphism

Hi(Y,Rf∗f
−1F)

∼−→ Hi(X, f−1F).

On the other hand, since f−1 is left adjoint to Rf∗, we have a cannonical morphism
K → Rf∗f

−1K, which induces a morphism on cohomologies

Hi(X,K)→ Hi(X,Rf∗f
−1K).

Now the composition of the two maps on cohomologies gives us the desired map
Hi(Y,K)→ Hi(X, f−1K) .

4 Cohomology with Proper Support

Let Y be a quasi-compact and quasi-separated scheme, and f : X → Y a separated
morphism of finite type. A theorem of Nagata says that f admits a compactification,

that is, there is a factorization X
j−→ X̄

f̄−→ Y such that f = f̄ ◦ j, where j is an open
immersion and f̄ is a proper morphism. Denote by D+

tor(X,A) the subcategory of
D+(X,A) consisting of complexes of torsion sheaves. Here a sheaf of A-modules is
said to be a torsion sheaf if it is a torsion sheaf as an abelian sheaf (E.g. if A is
a finite ring, then any sheaf of A-modules is a torsion sheaf). For any complex K
in D+

tor(X,A), set Rf!K = Rf∗f!K, then Rf!K, up to isomorphism, is independent
of the choice of the compactification of f , and we can define a derived functor
Rf! : D+

tor(X,A)→ D+
tor(Y,A).

Remark 4.1. 1. The derived functor Rf! is not the derived functor of f!.

2. The derived functor Rf! admits a right adjoint f ! : D+
tor(Y,A) → D+

tor(X, A).
Note that f ! : Sh(Y,A) → Sh(X,A) is only defined by closed immersion, and
if f is indeed a closed immersion, f ! : D+

tor(Y,A) → D+
tor is the right derived

functor of f ! : Sh(Y,A)→ Sh(X,A). Unfortunately, they both share the same
notation. Again, they are not needed for the formulation of Lefschetz trace
formula.

Now let k be a separably closed field, and X a scheme separated of finite type over

k. Let X
j−→ X̄ → Speck be a compactification. For any complex K in D+

tor(X,A),
we define

RΓc(X,K) = Γ(Speck,Rf∗K) = RΓ(X̄, j!K)
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Hi
c(X,K) = Hi(RΓc(X,K)) = Hi(X̄, j!K)

For any sheaf F on Xét, we define

Γc(X,F) = H0
c(X,F) = Γ(X̄, j!F).

Remark 4.2. The module Γc(X,F) is a submodule of Γ(X,F) consisting of those
sections in Γ(X,F) with support proper over Speck.

5 Traces and Perfect Complexes

Let A be a ring as in the begining of the notes. We let A\ be the quotient of the
additive group (A,+) by the subgroup generated by elements of the form ab − ba,
a, b ∈ A.

Example 5.1. Let A = Z/`[G], where G is a finite group. Then we have

A\ =
⊕

conjugacy class of G

Z/`

Let f : A⊕n → A⊕n be an endomorphism of free A-modules. And let f be
represented by a matrix (aij) with respect to a basis, we define the trace Tr(f) to
be the image of

∑n
i=1 aii in A\.

Example 5.2. Let f : A⊕r → A⊕s, g : A⊕s → A⊕r be two homomorphisms of free
A-modules. Then we have Tr(fg) = Tr(gf). One can check this easily.

Let P be a finitely generated projective A-module, and f : P → P an endomor-
phism of A-modules. Let p : A⊕n → P be a surjective homomorphism of A-modules,
then p has a split i : P → A⊕n. We define the trace Tr(f) = Tr(i ◦ f ◦ p). One
may use the previous example to show that the trace Tr(f) is independent of the
surjection p we choose. Moreover one can check that if f : P → Q, g : Q → P
are two homomorphisms of finitely generated projective A-modules, then we have
Tr(fg) = Tr(gf).

Let P · be a bounded complex of finitely generated projective A-modules, and let
f = (f i) : P · → P · be a morphism of complexes. We define

Tr(f) =
∑
i

(−1)iTr(f i)

If f is homotopic to 0, then Tr(f) = 0. Indeed, if hi : P i → P i−1 are homomor-
phisms such that hi+1di + di−1hi = f i, then we have

Tr(f) =
∑
i

(−1)iTr(hi+1di + di−1hi)

=
∑
i

(−1)iTr(hi+1di) +
∑
i

(−1)iTr(di−1hi)

=
∑
i

(−1)iTr(dihi+1) +
∑
i

(−1)iTr(di−1hi)

= 0.
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A bounded complex of finitely generated projective A-modules is called perfect.
Let Kb

perf(A) be the category of perfect complexes up to homotopy. By Lemma

3.2, we see that the canonical functor Kb
perf(A) → Db(A) is faithful, where Db(A)

is the derived category of bounded complexes of A-modules. Let Db
perf(A) be the

essential image of this functor. By the discussion above, one sees that for each
complex K in Db

perf(A), and each endomorphism f : K → K, we can define the
trace Tr(f,K) = Tr(f).

6 Lefschetz Trace Formula

Let X be a scheme of characteristic p > 0. Then we have the Frobenius FrX : X → X
given by sending a local section x to xq with q a power of p. And for any X-scheme
U , we can form the relative Frobenius map FrX/U : U → U (q), where

U (q) = U ×X,FrX X.

One sees easily that the formulation of the relative Frobenius FrX/U is functorial in
U . One important result (though not hard to prove) here is that if U is étale over
X, then the relative Frobenius FrX/U is an isomorphism.

Remark 6.1. The requirement that FrX/U is an isomorphism is equivalent to the
requirement that the following commutative diagram is cartesian.

U
FrU //

��

U

��
X

FrX // X

Lemma 6.1. If X is a scheme of characteristic p > 0, then for any sheaf in F in
Sh(X,A), there is an isomorphism F ' FrX∗F .

Proof. For any etale morphism U → X in Xét, the relatve Frobenius map FrU/X
gives an isomorphism of A-modules

F(U)→ FrX∗F(U) = F(U (q)).

Since the relative Frobenius map is functorial in U , we indeed get an isomorphism
F ' FrX∗F .

By adjunction, we also have a morphism Fr∗F : Fr−1
X F → F . One can show that

this is also an isomorphism. Similarly for any complex K in D(X,A), we also have
a morphism Fr∗K : Fr−1

X K → K.
To finally go to the setting of Lefschetz trace formula, we still need the notion

of “finite tor-dimension”. For a scheme X, we can define a functor

−
L
⊗− : D−(X,A)×D−(X,A)→ D−(X,A)
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given in the following way (see section 6.4 in [Fu11]). For any two complexes M,N
in D−(X,A), let P (resp. Q) be a flat resolution of M (resp. N), then we define

−
L
⊗−(M,N) = P ⊗A Q.

We denote −
L
⊗−(M,N) by M

L
⊗N. For any complex K in Db(X,A), we say K has

finite Tor-dimension if there exists an integer i such that Hi(K
L
⊗ E) = 0 for any

i < n, and any A-module E, where E is the constant sheaf with value E.
From now on we go to the setting of Lefschetz trace formula. Let k = Fq be a

finite field of characteristic p > 0, A a noetherian Z/`n-algebra with (l, p) = 1, X0 a
scheme separated and of finite type over k, and K0 a complex in Db

ctf(X0, A). Let
X0 → X0 be an compactification of X0. By the discussion above, for the Frobenius
morphism FrX0 : X0 → X0, there is a canonical morphism Fr∗K0

: Fr−1
X0
K0 → K0.

Let k̄ be an algebraic closure of k, and denote by X, X, j : X ↪→ X, K, Fr : X → X,
Fr∗K0

: Fr−1K0 → K0 the pull back of X0, X0, X0 ↪→ X0, K0, FrX0 : X0 → X0, and

F ∗K0
: Fr−1

X0
K0 → K0 along the morphism Speck̄ → Speck. Now, in order to give the

Lefschetz trace formula, we firstly define the so called “global Lefschetz number”.
For this, we want to set up an endomorphism

RΓc(X,K)→ RΓc(X,K).

To do this, notice that we have the following cartesian diagram (see Remark 6.1)

X0

FrX0 //
_�

��

X0� _

��
X0

FrX0 // X0

By base change along Speck̄ → Speck, we get a cartesian diagram

X_�

j
��

F // X� _

j
��

X̄
F ′ // X̄

By Remark 2.1 we have
F ′−1j!K = j!F

−1K

Now denote by F ∗ : RΓc(X,K)→ RΓc(X,K) the composite

RΓc(X,K) ' RΓ(X̄, j!K)
(∗)−−→ RΓ(X̄, F ′−1j!K)
' RΓ(X̄, j!F

−1K)
F ∗K0−−→ RΓ(X̄, j!K)
= RΓc(X,K),

where (∗) is due to Exmaple 3.1.
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Proposition 6.1. The complex RΓc(X,K) above lies in Db
perf(A).

Hence we can define the trace Tr(F ∗,RΓc(X,K)) of F ∗, called the global Lef-
schetz number of K0 ∈ Db

ctf(X0, A).
We need still to define the so called “local Lefschetz number” in the followin

way. For any rational point x ∈ X0(k), and Speck̄ → X, the geometric point
lying over x, Kx̄ = x̄−1K0 is a perfect complex, i.e., we have Kx̄ ∈ Db

perf(A). Let

Fx : Speck̄ → Speck̄ be the morphism induced by k → k sending x ∈ k to x1/q.
As in Lemma 6.1, we also have an isomorphism Kx̄ → Fx∗Kx̄, which by adjunction
induces a morphism F−1

x Kx̄ → Kx̄. Then the composite Kx̄ → F−1
x Kx̄ → Kx̄ gives

an endomorphism F ∗x : Kx̄ → Kx̄. The sum∑
x∈X0(k)

Tr(F ∗x ,Kx̄)

is the so called local “Lefschetz trace number” of K0 ∈ Db
perf(X0, A).

Finally we can state the Lefschetz trace formula, which says that the global
Lefschetz number is equal to the local Lefschetz number.

Theorem 6.1. (Lefschetz Trace Formula) Notations as above, we have∑
x∈X0(k)

Tr(F ∗x ,Kx̄) = Tr(F ∗,RΓc(X,K)).
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