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1 Introduction
If X is a smooth projective variety over C, then, for the archimedean topology on X(C), we
have H2 dim X

sing
(
X(C), Z/nZ

)
= Z/nZ for non-negative n. We would like to have an algebraic

theory of cohomology with similar kinds of results. Usual sheaf cohomology doesn’t suffice
here, since Hi(X, Z/nZ) (or Hi(X, AX) for any abelian group A) vanishes for all irreducible
schemes X and all i > 0; as the restriction maps of a constant sheaf on an irreducible space are
all equal to the identity map, all constant sheaves on irreducible spaces are flasque, hence all
higher cohomology vanishes.

This is solved by “adding more open subsets to X”. We will now proceed with explaining
exactly what we mean by the previous sentence.

2 Étale morphisms
We first define (or rather, recall the definition of) our “open subsets”.

Definition 2.1. Let f : X → S be a morphism of schemes. We say that f is formally étale if
for all rings A, morphisms Spec A → S, and ideals I of A with I2 = 0, the canonical map
XS(A)→ XS(A/I) is bijective. Moreover, we say that f is étale if f is formally étale and locally
of finite presentation.

Remark 2.2. Note that the property of a morphism being locally of finite presentation can also
be expressed purely in terms of the functor of points; a morphism f : X → S is locally of fi-
nite presentation if and only if the functor XS commutes with filtered colimits, i.e. for all fil-
tered diagrams of rings Ai together with morphisms Spec Ai → S, we have XS(colimi Ai) =
colimi XS(Ai). So étaleness of a morphism of schemes can be expressed purely in terms of its
functor of points.

Étale morphisms to the spectrum of a field have a particularly easy characterisation.

Proposition 2.3. Let k be a field. Then S → Spec k is étale if and only if S is the disjoint union of
Spec ki with ki a finite and separable extension of k.

This is particularly useful in combination with the following characterisation.

Proposition 2.4. Let f : X → S be a morphism of schemes. Then f is étale if and only if it is flat, locally
of finite presentation, and all of its fibres are étale.

For affine schemes, we have a characterisation in more concrete terms.
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Proposition 2.5. Let f : Spec B → Spec A be a morphism of schemes. Then f is étale if and only if B
is as an A-algebra of the form

B = A[x1, . . . , xs]/( f1, . . . , fs)

with |∂ f j/∂xi|i,j ∈ B×.

Finally, we give some properties of étale morphisms.

Proposition 2.6.
• The composition of étale morphisms is étale.
• The base change of an étale morphism is étale.
• Any morphism between étale S-schemes is étale, for any scheme S.
• Being étale is local on the source.
• Being étale is local on the base.

3 Étale sites
The following notion, the notion of a site, is a generalisation of the notion of a topology.

Definition 3.1. A site is a pair (C, Cov(C)) where
• C is a category;
• Cov(C) is a collection of families of morphisms {ϕi : Ui → U} in C, called coverings, such

that
– if ϕ : V → U is an isomorphism, then {ϕ} ∈ Cov(C);
– if {ϕi : Ui → U} in Cov(C), and for all i,

{
ψij : Uij → Ui

}
in Cov(C), then{

ϕiψij : Uij → U
}
∈ Cov(C);

– if {ϕi : Ui → U} in Cov(C), then for all morphisms V → U in C
∗ the fibre product Vi = V ×U Ui exists in C for all i;
∗ the set {ϕi,V : Vi → V} ∈ Cov(C).

Let us give some examples.

Example 3.2. Let S be a scheme. Then the category Op(S) of open subschemes of S, where
{ϕi : Ui → U} is a covering if and only if the ϕi are jointly surjective, is a site. We call this the
small Zariski site SZar of S.

Next, we give the main examples of sites we consider in this seminar.

Example 3.3. Let S be a scheme. Then the category SchS, where {ϕi : Ui → U} is a covering if
and only if the ϕi are étale and jointly surjective, is a site, the big étale site SchS,ét of S.

Example 3.4. Let S be a scheme. Then the full subcategory of SchS of étale S-schemes, where
{ϕi : Ui → U} is a covering if and only if the ϕi are jointly surjective, is a site, the small étale site
Sét of S.

Here is an indication why the étale topology on a scheme is the “right” topology to consider:
Note that it is not true that any smooth S-scheme X (Zariski-)locally admits an open immersion
into some Ad

S, the following slightly weaker statement is true.

Proposition 3.5 ([SP,054L]). Let X be an S-scheme. Then X is smooth over S if and only if there exists
a (Zariski) cover {Xi → X} of X such that Xi admits an étale S-morphism into some Ad

S.

So in a sense, smooth S-schemes are precisely those that can be obtained by gluing “open
subsets” of Ad

S, with respect to the étale topology on Ad
S, and this fact should remind you of a

definition of a smooth manifold.
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4 Sheaves on sites
We now define the notion of a sheaf on a site. Do check as a (rather easy) exercise that on the
site SZar, we get the familiar notion back.

Definition 4.1. Let C be a site. A presheaf on C is a functor F : Cop → Set. A presheaf F on C is
separated if for all coverings {ϕi : Ui → U} the map

F (U)→∏
i
F (Ui)

is injective. A presheaf F on C is a sheaf if for all coverings {ϕi : Ui → U} the diagram

F (U) ∏i F (Ui) ∏i,j F (Ui ×U Uj)

where the left map is given by x 7→ (x|Ui ) and the two maps on the right are given by (xi) 7→
(xi|Ui×UUj) and (xi) 7→ (xj|Ui×UUj), is an equaliser diagram. A morphism of (pre-)sheaves is a
morphism of functors.

From this definition, one can also deduce what a sheaf of abelian groups, rings, modules,
etc. is in this setting. Denote the category of sheaves on C by Sh(C), and the category of
presheaves on C by PSh(C).

Now, as in the familiar case, one would like to sheafify presheaves, i.e. give a left adjoint to
the forgetful functor Sh(C)→ PSh(C).

Proposition 4.2. Let C be a site. Then the forgetful functor Sh(C)→ PSh(C) admits a left adjoint.

We will only give the construction of the sheafification, and even then, only modulo a lot of
details.

Let F be a presheaf on C, and let U = {Ui → U} be a covering. Define the zeroth Čech
cohomology

Ȟ0
(U ,F ) =

{
(si) ∈∏

i
F (Ui) : (∀i, j)(si|Ui×UUj = sj|Ui×UUj)

}
.

Of course, we have a canonical map F (U)→ Ȟ0
(U ,F ), which is a bijection for all coverings U

if and only if F is a sheaf. So let’s try, for all objects U of C, replacing F (U) by colimU Ȟ0
(U ,F ),

where U runs through all coverings of U (taking as morphisms the refinements).
We first need to make sense of the latter expression. Let U = {ϕi : Ui → U : i ∈ I}, V ={

ψj : Vj → V : j ∈ J
}

. Then a morphism V → U of coverings is given by a morphism χ : V → U, a
map α : J → I, and morphisms χj : Vj → Uα(j) for all j, such that for all j, we have ϕα(j)χj = χψj.
Moreover, a refinement is a morphism V → U of coverings with V = U and χ = idU .

Now a morphism χ : V → U defines a map χ∗ : Ȟ0
(U ,F ) → Ȟ0

(V ,F ), (si) 7→ (χ∗j sα(j)). We
(well, by that we mean the reader) have to check the following.

• The map χ∗ is well-defined.
• The map χ∗ is independent of α and the χj for all j.

Define F+(U) = colimU Ȟ0
(U ,F ), where U runs through all coverings of U (where the

morphisms are the refinements). Note that this colimit actually is directed, despite its index
category not being codirected; any two refinements U ′ → U of coverings of U define the same
morphism Ȟ0

(U ,F )→ Ȟ0
(U ′,F ), and for any two coverings U and U ′ of U, there exists a third

covering U ′′ of U, and refinements U ′′ → U and U ′′ → U ′. Therefore an element of F+(U) is
just an equivalence class of pairs (s,U ) with U a covering of U and s ∈ Ȟ0

(U ,F ), where two
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pairs (s,U ) and (t,V) are equivalent if and only if there exists a covering W and refinements
W → U andW → V such that the images of s and t in Ȟ0

(W ,F ) are the same.

Theorem 4.3 ([SP,00WB]). Let F be a presheaf on a site C.
• F+ is a presheaf.
• There is a canonical map F → F+.
• F+ is separated.
• If F is separated, then F+ is a sheaf, and the canonical map F → F+ is injective.
• F # = (F+)+ is the sheafification of F , and therefore −# is a left adjoint of the forgetful functor.

We next give some examples of (pre-)sheaves on the étale sites of a scheme. Note first that
any (pre-)sheaf on the big étale site of a scheme, by restriction gives rise to a (pre-)sheaf on the
corresponding small étale site. Hence we will only give examples of (pre-)sheaves on the big
étale site.

Example 4.4. Let S be a scheme.
• The presheaf OS (or Ga,S) of rings on SchS,ét is defined by T 7→ OT(T).
• The presheaf O×S (or Gm,S) of groups on SchS,ét is defined by T 7→ OT(T)×.
• The sheaf Z/nZS on SchS,ét is the sheafification of the constant presheaf with values in

Z/nZ.
• The constant presheaf on SchS,ét with values in A is a sheaf if and only if A = 0.

In the next lecture, we will see thatOS andO×S are in fact sheaves, and that for all S-schemes U,
the group Z/nZS(U) is the group of locally constant maps U → Z/nZ.

5 Cohomology on a site
The following facts allow us to define cohomology on sites in the usual way, as the right derived
functors of the sections functors.

Theorem 5.1. Let C be a site. Then the category Ab(C) is abelian and has enough injectives. Moreover,
the sections functor Γ(U,−) : Ab(C)→ Ab is left exact for all objects U of C.

Definition 5.2. Let C be a site, U be an object of C, and let F be a sheaf of abelian groups on C.
Then the n-th cohomology group of F is

Hn(U,F ) = RnΓ(U,F ) = Hn(I ·(U)
)
,

for F → I · an injective resolution of F .

In the special case that C is either SchS,ét or Sét for a scheme S, we denote these cohomology
groups by Hn

ét(U,F ). The following theorem says that there is no ambiguity in doing so.

Theorem 5.3. LetF be a sheaf of abelian groups on SchS,ét. Then for all U/S étale, we have Hn
ét(U,F ) =

Hn
ét(U,F|Sét).

Proof. We first define two functors c∗ : Sh(SchS,ét) → Sh(Sét) and c−1 : Sh(Sét) → Sh(SchS,ét).
The former one is defined by

c∗F = F|Sét =
(
U 7→ F (U)

)
,

and the latter is defined by
c−1F =

(
U 7→ colimV F (V)

)#

where V runs through the étale S-schemes such that the S-scheme U factors through V. Note
that c−1 is left adjoint to c∗. As filtered colimits of injective maps are injective, we see that
c−1 maps injective maps to injective maps. Hence c∗ maps injectives to injectives, and we’re
done. �
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6 Stalks of sheaves on the small étale site
For the small étale site, the theory of stalks of sheaves is similar to that of the small Zariski site,
provided we pick the right notion of points and neighbourhoods.

Definition 6.1. Let S be a scheme. A geometric point s is an S-scheme of the from Spec k with k
separably closed. If its image is s ∈ S, we say that s lies over s. A morphism of geometric points
s→ s′ is a morphism of S-schemes.

Definition 6.2. Let S be a scheme, and let s be a geometric point of S. An étale neighbourhood
of s is an étale morphism of geometrically pointed schemes (U, u) → (S, s), i.e. a commutative
diagram

U S

s
u s

with U → S étale.

Lemma 6.3. Let S be a scheme, and let s be a geometric point of S. The category of étale neighbourhoods
of s is cofiltered.

Hence we can define stalks in the usual way.

Definition 6.4. Let S be a scheme, and let s be a geometric point of S. The stalk of a presheaf F
on Sét is

Fs = colim(U,u) F (U),

where (U, u) runs through all étale neighbourhoods of s.

More concretely, an element of the stalk Fs is an equivalence class of triples (x, U, u), where
(U, u) is an étale neighbourhood of s and x ∈ F (U), and where two such triples (x, U, u)
and (y, V, v) are equivalent if and only if there exists an étale neighborhood (W, w) of s and
morphisms (W, w)→ (U, u) and (W, w)→ (V, v) such that x|W = y|W .

Given a morphism s → s′ of geometric points of S, we get a functor F from the category
of étale neighbourhoods of s′ to the category of étale neighbourhoods of s, hence also, for all
presheaves F , a map Fs′ → Fs. As this F is an equivalence of categories, the map on stalks is
an isomorphism.

Proposition 6.5. Let S be a scheme, let F be a presheaf on Sét, and let s be a geometric point of S. Then
Fs = (F #)s.

Proposition 6.6. Let S be a scheme. Then the stalk functors PSh(Sét) → Set, Sh(Sét) → Set,
PAb(Sét)→ Ab, and Ab(Sét)→ Ab are exact.

Proposition 6.7. Let S be a scheme, and let F → G be a morphism of sheaves on S (of sets or of abelian
groups). Then F → G is injective (resp. surjective) if and only if it is injective (resp. surjective) on
stalks. A sequence of sheaves of abelian groups is exact if and only if it is exact on stalks.

7 Stalks of the structure sheaf
In this section we study the relationship between the stalks of the structure sheafOS of a scheme
S in the usual sense, and the stalks of the structure sheaf on the small étale site on S. We will
see that OSét,s is a so-called strict henselisation of OS,s. Let us start defining this.

Informally, a local ring is henselian if it satisfies Hensel’s lemma. Since there are many ver-
sions of Hensel’s lemma, we pick one, and take it as our definition.
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Definition 7.1. A local ring (R,m, κ) is henselian if for all monic f ∈ R[T], and all a0 ∈ κ such
that f (a0) = 0 and f ′(a0) 6= 0, there exists an a ∈ R such that f (a) = 0 and a = a0 in κ.

Example 7.2. All complete local rings are henselian.

Some characterisations of this notion. More characterisations can be found in [SP,04GG].

Proposition 7.3. The following are equivalent for a local ring (R,m, κ).
• R is henselian,
• for any f ∈ R[T] and any factorisation f = g0h0 in κ[T] with gcd(g0, h0) = 1, there exists a

factorisation f = gh in R[T] with g = g0 and h = h0,
• any finite R-algebra is isomorphic to a finite product of local rings.

Definition 7.4. A local ring (R,m, κ) is strictly henselian if it is henselian and κ is separably
closed.

Example 7.5. A separably closed field is strictly henselian.

We now define the (strict) henselisation of a local ring. Recall that an ind-étale R-algebra is a
filtered colimit of étale R-algebras.

Definition 7.6. Let (R,m, κ) be a local ring. A henselisation of R is a final object Rh in the category
of pairs (S, q) of an ind-étale R-algebra S and a prime ideal q lying over m such that the canonical
map κ → κ(q) is an isomorphism, where the morphisms (S, q) → (S′, q′) are the morphisms
ϕ : S→ S′ such that ϕ−1q′ = q.

Proposition 7.7. Let (R,m, κ) be a local ring. Then henselisations exist. Moreover, if R → Rh is a
henselisation, then

(
Rh,mRh, κ(mRh)

)
is a henselian local ring, and the canonical map κ → κ(mRh) is

an isomorphism.

Sketch of proof. First note that Rh = colim(S,q) S, where (S, q) runs through the pairs as above
such that S is étale over R (with morphisms as above as well), defines a henselisation of R.

We show that Rh is local with maximal ideal m. Let x ∈ Rh. By the description above, we
can represent x by a triple ( f , S, q) with S étale over R and f ∈ S. By prime avoidance, we may
assume that q is the only ideal lying over m. As S⊗R κ(q) is étale over κ, it then follows that
mS = q.

Now let x ∈ Rh −mRh. Represent x by a triple ( f , S, q) with mS = q. Then f 6∈ mS = q, so x
is also represented by the triple ( f , S f , qS f ), which is invertible. Hence x is invertible in Rh, so
Rh is a local ring with maximal ideal mRh.

It now remains to show that Rh is henselian. Let P be a monic polynomial in Rh[T], and let
a0 be a zero of P, but not of P′. Then there exists a pair (S, q) such that P is the image of a monic
polynomial Q in S[T]. Now consider S′ = S[T]/(Q) and q′ = (q, T − a0). Then κ = κ(q′), and
there exists a g ∈ S′ − q′ such that S′g is étale over S. We obtain a morphism (S, q)→ (S′g, q′S′g),
and T ∈ S′g defines an element a of Rh such that P(a) = 0 in Rh. �

To define strict henselisations, some more care is needed; we want the henselisation of a field
to be its separable closure, but separable closures are not unique up to a unique isomorphism.
We settle this by fixing a separable closure of the residue field beforehand.

Definition 7.8. Let (R,m, κ) be a local ring, and let κsep be a separable closure of κ. A strict
henselisation of R with respect to κsep is a final object Rsh in the category of triples (S, q, α) of an
ind-étale R-algebra S, a prime ideal q lying over m, and a κ-algebra morphism α : κ(q) → κsep,
where the morphisms (S, q, α) → (S′, q′, α′) are the morphisms ϕ : S → S′ such that ϕ−1q′ = q
and α = α′ϕ (where ϕ : κ(q)→ κ(q′) is the induced morphism).
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The following proposition is proved in a similar way as the previous one.

Proposition 7.9. Let (R,m, κ) be a local ring, and let κsep be a separable closure of κ. Then strict henseli-
sations with respect to κsep exist. Moreover, if R→ Rsh is a strict henselisation, then

(
Rsh,mRsh, κ(mRsh)

)
is a strictly henselian local ring, and the map κ(mRsh)→ κsep is an isomorphism.

Theorem 7.10. Let S be a scheme, let s ∈ S, let s be a geometric point of S lying over s, and let κsep be
the separable closure of κ = κ(s) in κ(s). Then the canonical morphism OS,s → OS,s from the Zariski
local ring to the étale local ring is a strict henselisation of OS,s with respect to κsep.

Sketch of proof. Note that
OS,s = colim(U,u)OU(U),

where the colimit runs through the étale neighbourhoods of s. Taking a (Zariski) affine open
neighbourhood Spec A of s, we get a cofinal system of étale neighbourhoods such that U is
affine and factors through Spec A, hence

OS,s = colim(B,q,α) B = colim(B,q,α) Bq

where the colimit is taken over the category of triples (B, q, α) with B an étale A-algebra, q a
prime ideal lying over the prime ideal p corresponding to s, and α : κ(q) → κsep a κ-algebra
morphism. Localising these triples by p gives an isomorphism

OS,s = colim(B,q,α) B,

where the colimit is taken over the category of triples with B an étale Ap-algebra. (Note that the
collection of local such algebras give a cofinal system.) Hence we are done. �
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