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1 Introduction
As we have seen in Giulio’s talk, étale cohomology of a smooth projective curve X (over a sep-
arably closed field with Z/nZ-coefficients with n ≥ 1) behaves a lot like singular cohomology,
since H0(Xét, Z/nZ) and H2(Xét, Z/nZ) are isomorphic to Z/nZ, and H1(Xét, Z/nZ) is iso-
morphic to (Z/nZ)2g, where g is the genus of the curve X. This no longer holds once we replace
Z/nZ by Z, as we will show below.

Definition 1.1. A scheme X is geometrically unibranch at x ∈ X if for all geometric points x over
x, the scheme SpecOX,x is irreducible. A scheme X is geometrically unibranch if it is geometrically
unibranch at all x ∈ X.

For example, this is the case when X is a normal k-scheme by [EGAIV,6.15.6].
We have the following useful characterisation.

Lemma 1.2 ([SP,06DK]). Let X be a scheme, and let x ∈ X. Then X is geometrically unibranch at x if
and only if for all étale U → X, all u ∈ U mapping to x ∈ X, the scheme SpecOU,u is irreducible.

Our goal is the following.

Proposition 1.3. Let X be a geometrically unibranch, irreducible scheme. Then H1(Xét, Z) = 0.

Note that we do need the condition that X is geometrically unibranch; for example, if X is
a nodal cubic curve, then there does exist a connected Z-torsor over X, namely a chain of P1,
each glued to the next in one point.

We will need to introduce some tools in order to prove Proposition 1.3.

1.1 Cohomology, colimits, and higher derived images
The notion of morphisms of abelian sheaves lying over a morphism of schemes, as mentioned
by Bas last week, allows us to define a category Abét(Sch) in which:

• the objects are pairs (F , X) of an abelian (étale) sheaf F and the scheme X it lies over;
• the morphisms (F , X) → (G, Y) are pairs (ϕ, f ) of a morphism ϕ : F → G and the

morphism f : Y → X it lies over.
This allows us to state [SP,09YQ] in a very concise way.

Theorem 1.4 ([SP,09YQ]). Let (F , X) = colimi(Fi, Xi) be a filtered colimit in Abét(Sch), such that
each Xi is qcqs, and all transition maps of schemes are affine. Then

Hp(Xét,F ) = colimi Hp(Xi,ét,Fi).
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If one expands this formulation, one gets back the formulation as in [SP,09YQ].

Remark 1.5. The proof of this theorem boils down to proving that as sites Xét = colimi Xi,ét.

We also have the following étale analogue of a well-known fact in usual sheaf cohomology,
and the proof is also exactly the same.

Proposition 1.6 ([SP,03Q8]). Let f : Y → X be a morphism of schemes, and let G be an abelian étale
sheaf on Y. Then Rp f∗G is the sheaf associated to the presheaf

U 7→ Hp(Y×X U,G|Y×XU).

Combining these results then give the following.

Theorem 1.7 ([SP,03Q9]). Let f : Y → X be a morphism of schemes, let G be an abelian étale sheaf on
Y, and let x ∈ X be a geometric point. Then

(Rp f∗G)x = Hp(Y×X SpecOX,x, π−1
Y G).

Proof. Better left as exercise, but reference gives a proof as well. �

1.2 Proof of Proposition 1.3
A feature of the étale topology is that cohomology on X is the same as cohomology on its
reduced subscheme, see [SP,04DY]. So we may assume that X is integral.

First of all, let η be the generic point of X, and let i : η → X denote the inclusion. Then by
adjunction we have a natural map ϕ : ZX → i∗Zη (which is actually a map of sheaves of rings).

We proceed in a number of steps.

Step 1. We show that for any field k, and η = Spec k, we have H1(η, Zη) = 0.
Let G be an element of H1(Spec k, Z), i.e. an étale Z-torsor on Spec k. Then for some finite

Galois extension k′/k, the sheaf G|Spec k′ is the trivial Z-torsor. This implies that we have an
action of Gal(k′/k) on Z (as Z-torsor), which is the same as a morphism Gal(k′/k) → Z of
groups. But the left hand side is torsion, and the right hand side is torsion-free. Therefore this
Gal(k′/k)-action on Z is the trivial one, and G is the trivial Z-torsor.

Step 2. We show that Kx = OX,η ⊗OX,x OX,x is a field.
As OX,η is the localisation of OX,x by the set S of all non-zero elements, we know Kx =

S−1OX,x. Let s ∈ OX,x be a non-zero element. Then there exists an étale map U to X, and a
point u ∈ U mapping to x such that the field of fractions K′ of OU,u is finite separable over the
field of fractions K of OX,x, and s ∈ OU,u is non-zero. Let f be the minimal polynomial of u in
K′ over K. As f (s) = g(s)s + c for some polynomial g over K and c ∈ K×, we can write c as a
quotient of elements of S. Therefore s is invertible in K′, and hence also in Kx.

Step 3. We show that ϕ : ZX → Zη is an isomorphism.
We check this on stalks using Theorem 1.7. Let x be a geometric point of X, and write ηx =

η ×X SpecOX,x. Obviously, we have (ZX)x = Z. Moreover, (i∗Zη)x = Γ(ηx, Zηx
). As ηx is the

spectrum of OX,η ⊗OX,x OX,x, which is a field by Step 2, it is then clear that (i∗Zη)x = Z. As we
know the map ϕx is a map of rings, it must be the identity.

Step 4. Finally, we show that R1i∗Zη = 0.
It suffices to show this at every stalk. As in Step 3, Theorem 1.7 states that for x ∈ X, and any

geometric point x over x, we have

(R1i∗Zη)x = H1(ηx,ét, Zηx
),

which is zero by Step 1.
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Step 5. Hence H1(Xét, ZX) = H1(Xét, i∗Zη) = H1(ηét, Zη) = 0, where the second equality
comes from the Leray spectral sequence. A direct proof of this isomorphism can be found in the
appendix.

2 Appendix
The following is rather independent of the topology, but we state it for the étale topology any-
way.

Lemma 2.1. Let f : Y → X be a morphism of schemes, and let F be a sheaf in Ab(Yét) (or any other
topology on SchY). If R1 f∗F = 0, then H1(Xét, f∗F ) = H1(Yét,F ).

Proof. As stated in Section 1.2, this follows directly from the Leray spectral sequence, but here’s
a (hopefully fun) more direct proof of this fact, which only uses the long exact sequence of co-
homology, and the fact (due to Grothendieck) that RΓ(Xét, R f∗−) = RΓ(Yét,−), for a morphism
f : Y → X of schemes.

Let I• be an injective resolution of F , and let J • be an injective resolution of f∗I•, and
denote its differentials by di : J i → J i+1. As R1 f∗F = 0, it follows that J • is exact at J 1.
Hence we have a short exact sequence

0 f∗F J 0 ker d1 0,

inducing a long exact sequence

0 f∗F (X) J 0(X) ker d1(X) H1(X, f∗F ) H1(X,J 0) = 0.

Therefore

H1(Xét, f∗F ) = ker d1(X)/ im
(
d0(X)

)
= H1(J •(X)

)
= H1(RΓ(Xét, R f∗F )

)
= H1(RΓ(Yét,F )

)
= H1(Yét,F ).
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