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Here’s the section from last week that I didn’t get to at the time.

1 Pro-étale coverings
Instead of what the terminology suggests, we will not use pro-étale morphisms of schemes to
define the pro-étale site. Instead, we use the notion of a weakly étale morphism of schemes,
which we define below.

1.1 Weakly étale morphisms
Definition 1.1. Let f : Y → X be a morphism of schemes. Then f is weakly étale if both f and
the diagonal ∆ f : Y → Y×X Y are flat.

We can characterise this in terms of the stalks as follows.

Proposition 1.2. Let f : Y → X be a morphism of schemes. Then f is weakly étale if and only if for all
y ∈ Y, the map SpecOY,y → SpecOX, f (y) is weakly étale.

Only requiring that the diagonal is flat already has the following nice consequence.

Lemma 1.3. Let f : Y → X be a morphism of schemes such that ∆ f : Y → Y×X Y is flat. Let F be an
OY-module. If F is flat over X, then F is flat over Y.

Proof. Let y ∈ Y, let A = OX, f (y) and B = OY,y. Note that the functor

−⊗A Fy : B- Mod→ (B⊗A B)- Mod

is exact. Moreover, B⊗A B→ B is flat, so

−⊗B⊗AB B : (B⊗A B)- Mod→ B- Mod

is exact as well, so the composition of these two functors is exact as well.
This composition sends any B-module N to

(N ⊗A Fy)⊗B⊗AB B = N ⊗B Fy,

therefore Fy is flat over B, as desired. �

Lemma 1.4. Let f : Y → X and g : Z → Y be morphisms of schemes. Suppose that g is faithfully flat,
and ∆ f g : Z → Z×X Z is flat. Then ∆ f : Y → Y×X Y is flat.

Proof. We have a commutative diagram

Z Z×X Z

Y Y×X Y

∆ f g

g g×g

∆ f
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As (g× g)∆ f g is flat, and g is faithfully flat, it follows that ∆ f is flat. �

We have some basic properties.

Proposition 1.5.
(a) The base change of a weakly étale morphism is weakly étale.
(b) The composition of weakly étale morphisms is weakly étale.
(c) Any morphism of weakly étale S-schemes is weakly étale.
(d) A cofiltered limit of affine schemes that are weakly étale over an affine scheme, is weakly étale.
(e) The property of being weakly étale is fpqc local on the base.

Proof. The proof is left to the reader. Note that the proof of (c) uses Lemma 1.3. �

Property (e) above is the reason why we consider weakly étale morphisms instead of pro-
étale ones, since (e) fails for pro-étale morphisms.

1.2 qc-coverings
There is one condition in the definition of an fpqc-covering that we would like to study on its
own, as it will later appear as well in the definition of a pro-étale covering. Note: the terminol-
ogy here is non-standard.

Definition 1.6. A morphism ϕ : S′ → S of schemes is a qc-covering if for any quasi-compact open
U ⊆ S there exists a quasi-compact open U′ ⊆ S′ such that ϕ(U′) = U. A family {ϕi : Si → S}
of morphism of schemes is a qc-covering if ϕ : äi Si → S is a qc-covering.

Note that qc-coverings always are (jointly) surjective.

Lemma 1.7.
(a) Let ϕi : S′i → Si be qc-coverings. Then ϕ = äi ϕi : S′ → S is also a qc-covering, where S = äi Si

and S′ = äi S′i .
(b) Let ϕ : S′ → S and ψ : S′′ → S′ be qc-coverings. Then ψϕ is a qc-covering.
(c) Let ϕ : S′ → S be a qc-covering, and let f : T → S be a morphism of schemes. Then the base change

ϕT : T′ → T, where T′ = T ×S S′, is a qc-covering.

The reason we haven’t encountered this notion in the definition of e.g. the étale site is the
following.

Proposition 1.8. Any open surjective morphism ϕ : S′ → S is a qc-covering.

Proof. Let U ⊆ S be a quasi-compact open. Cover its preimage ϕ−1U in S′ by quasi-compact
open subsets U′i . As ϕ is surjective, the images ϕU′i cover U. Since U is quasi-compact, there
is a finite set J of indices i such that the ϕU′i for i ∈ J cover U. Set U′ =

⋃
i∈J U′i . Then U′ is a

finite union of quasi-compact open subsets, hence quasi-compact, and ϕU′ = U. Hence ϕ is a
qc-covering of S. �

Note that all faithfully flat morphisms that are locally of finite presentation are open and
surjective, hence are qc-coverings.

1.3 The pro-étale sites
We can now define the coverings in the pro-étale site.

Definition 1.9. A morphism is a pro-étale covering if it is a weakly étale qc-covering. A family
of morphisms {Si → S} is a pro-étale covering if it is a qc-covering consisting of weakly étale
morphisms.
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Note that by Proposition 1.5 and Lemma 1.7, we can define the following (some set-theoretic
issues aside).

Definition 1.10. Let S be a scheme.
• The big pro-étale site on S is the site SchS,pro-ét where the coverings are the pro-étale

coverings.
• The (small) pro-étale site on S is the site Spro-ét which is as a category the full subcategory

of SchS of weakly étale S-schemes, and in which the coverings are the qc-coverings.

As any pro-étale covering is an fpqc covering, it follows that the big and small pro-étale sites
are subcanonical.

1.4 Examples of pro-étale coverings

First note that since strict henselisations of local rings are ind-étale by definition, we have the
following family of examples.

Example 1.11. Let X be a scheme, and let Y ∈ Xpro-ét. Let y1, . . . , yn be geometric points lying
over distinct closed points y1, . . . , yn. Then(

ä
i

SpecOY,yi

)
t
(
Y− {y1, . . . , yn}

)
→ Y

is a pro-étale covering of Y.
If we replace infinitely many points in the same way, the result is not a pro-étale covering as

it is not a qc-covering.

Here’s a more “uniform” family of examples.

Example 1.12. Let X be a scheme, and let Y ∈ Xpro-ét be qcqs. Let G be the étale fundamental
group of Y, and let S be a pro-finite continuous G-set.

Then S is a cofiltered limit limi Si of finite continuous G-sets. For all i, let Yi be the finite
étale Y-scheme corresponding to the finite G-set Si. This gives a cofiltered system of finite étale
schemes over a qcqs scheme. Therefore its limit Y ⊗ S = limi Yi exists, and is a weakly étale
Y-morphism. It is a pro-étale covering if and only if S is non-empty.

Using this construction, one can describe the affine objects in (Spec k)pro-ét explicitly.

Proposition 1.13. Let k be a field, and let G = Gal(ksep/k). Then the full subcategory of (Spec k)pro-ét
of affine objects is equivalent to the category of pro-finite continuous G-sets.

Proof. We simply note that there is an obvious functor X 7→ X(ksep) which is quasi-inverse to
the functor S 7→ (Spec k)⊗ S. �

Note that under this identification, the pro-étale coverings in (Spec k)pro-ét consisting of affine
objects correspond to {Si → S} for which there exists a finite index set J such that äj Sj → S is
surjective.

We will see in the next section that the collection of affine weakly étale k-schemes is enough
to check the sheaf property on the pro-étale site with.

2 Generators for the pro-étale topology
In this section, we justify the fact that despite not (directly) using “pro-étale morphisms”, this
site is still called the pro-étale site. We will restrict our discussion mostly to the small pro-étale
site. We follow [Bhatt-Scholze], rather than the Stacks Project.
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Definition 2.1. An object U of Xpro-ét is pro-étale affine if it is a cofiltered limit of affine schemes
that are étale over X.

Note that a pro-étale affine object of Xpro-ét is indeed affine, and pro-étale over X. Denote the
full subcategory of Xpro-ét of pro-étale affines by Xaff

pro-ét. It becomes a site when taking pro-étale

surjections as coverings. We will show that Xpro-ét is generated by Xaff
pro-ét; the precise statement

is the following.

Proposition 2.2. Every Y ∈ Xpro-ét admits a covering {Ui → Y} with Ui ∈ Xaff
pro-ét.

In order to prove this, we study the notion of ind-étale ring maps more closely, and study its
relation with weakly étale ring maps.

2.1 Ind-étale and weakly étale algebras
Definition 2.3. Let A be a ring. An A-algebra B is ind-étale if B is isomorphic to a filtered colimit
of étale A-algebras.

The basic properties hold for ind-étale ring maps.

Proposition 2.4. (a) Let A → B and A → A′ be morphisms of rings, and write B′ = B⊗A A′. If
A→ B is ind-étale, then so is A′ → B′.

(b) Let A → B and B → C be morphisms of rings. If A → B and B → C are ind-étale, then so is their
composition A→ C.

(c) Let A→ B and B→ C be morphisms of rings. If A→ B and the composition A→ C are ind-étale,
then so is B→ C.

(d) Any filtered colimit of ind-étale A-algebras is an ind-étale A-algebra.

Note that by Proposition 1.5.(d), ind-étale ring maps are weakly étale. Now the following
theorem implies Proposition 2.2.

Theorem 2.5 ([Bhatt-Scholze, Thm. 2.3.4]). Let A → B be a weakly étale morphism of rings. Then
there exists a faithfully flat ind-étale morphism B→ C of rings such that A→ C is ind-étale.

2.2 Characterising sheaves on the pro-étale site

The fact that Xpro-ét is generated by Xaff
pro-ét has the following consequence.

Let Xpro-ét,aff denote the subcategory of all affine objects of Xpro-ét. Note that this category is
not the same as Xaff

pro-ét. We give it the structure of a site by taking all pro-étale surjections as
coverings.

Proposition 2.6. Let F be a presheaf (of sets) on Xpro-ét. Then F is a sheaf on Xpro-ét if and only if
(a) F is a Zariski sheaf,
(b) for all coverings V → U with V ∈ Xpro-ét,aff, the diagram

F (U) F (V) F (V ×U V)

is an equaliser diagram.

Proof. This proof is inspired by [SP,022H]. If F is a sheaf, then there is nothing to prove.
So assume (a) and (b). By (a), for all U = äi Ui, we have F (U) = ∏i F (Ui). We shall use

this fact tacitly.
We first show that F is separated. Let V → U be a pro-étale covering with V arbitrary

and U affine. Note that there is a cover W → U with U, W ∈ Xpro-ét,aff refining V → U,
4



by Proposition 2.2 and as U is affine. Therefore F (U) → F (W) is injective by (b), so so is
F (U)→ F (V).

Now let V → U be an arbitrary pro-étale covering. Let {Ui} be an affine open covering of
U, and write Vi = V ×U Ui. Then the composition F (U) → ∏i F (Ui) → ∏i F (Vi) is injective,
therefore F (U)→ F (V) is injective as well. Hence F is separated.

Now we show that F is a sheaf. First let f : V → U be an arbitrary pro-étale covering with U
affine. Again, there is a cover W → U with W ∈ Xpro-ét,aff refining V → U. Behold the following
diagram.

F (U) F (V) F (V ×U V)

F (U) F (W) F (W ×U W)

F (V) F (V ×U W)

Note that this diagram is commutative (for a suitable choice of one of each pair of parallel
arrows) as it arises from a commutative diagram of schemes.

By assumption the middle row is an equaliser diagram. We show that the top row is an
equaliser diagram as well.

Suppose that s ∈ F (V) is such that its two images to the right are equal. Then the same
holds for s|W , so by (b) there exists a unique t ∈ F (U) such that t|W = s|W . Note that F (V) →
F (V ×U W) is injective. Both t|V and s are mapped to the same element by this map, therefore
t|V = s, and t is the unique element of F (U) with this property.

Now suppose that V → U is an arbitrary pro-étale covering. Let {Ui} be an affine open
covering of U, and let Uij = Ui ∩Uj. Moreover, write Vi = V ×U Ui and Vij = V ×U Uij. Behold
the following diagram.

F (U) F (V) F (V ×U V)

∏i F (Ui) ∏i F (Vi) ∏i F (Vi ×Ui Vi)

∏i,j F (Uij) ∏i,j F (Vij)

Again, this diagram is commutative, as it comes from a commutative diagram of schemes.
By assumption, and by the previous step, all pairs of parallel arrows except for the one in the

top row belong to an equaliser diagram. We show that the top row is an equaliser diagram as
well.

Suppose that s ∈ F (V) is such that its two images to the right are equal. Then the same holds
for s|Vi ∈ F (Vi) for all i. Therefore there exists unique ti ∈ F (Ui) such that ti|Vi = s|Vi for all i.
Note that the map ∏i,j F (Uij) → ∏i,j F (Vij) is injective. Therefore the two downward images
of each ti are equal. Hence there exists a unique t ∈ F (U) such that t|Ui = ti. Now t|V and s
map to the same element of ∏i F (Vi), so t|V = s. We conclude that F is a sheaf on Xpro-ét. �

Note that this is slightly weaker than [Bhatt-Scholze, Lem. 4.2.6].

Corollary 2.7. Let X be a scheme. Then the restriction functor Sh(Xpro-ét) → Sh(Xaff
pro-ét) is an

equivalence of categories.
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Proof. It remains to show that the restriction functor Sh(Xpro-ét,aff) → Sh(Xaff
pro-ét) is an equiv-

alence of categories. We explicitly give a quasi-inverse, but leave the proof that it is indeed a
quasi-inverse to the reader.

Let F ∈ Sh(Xaff
pro-ét). Define F as follows. For U ∈ Xpro-ét,aff, set F (U) = limV F (V), where

V runs through the V → U in Xpro-ét,aff with V ∈ Xaff
pro-ét.

Note thatF is a presheaf as for every U′ → U in Xpro-ét,aff, the limit taken inF (U′) is a subset
of that taken in F (U). We now show that F is a sheaf.

Let U′ → U be a covering in Xpro-ét,aff. Then for any V → U with V ∈ Xaff
pro-ét, we get

a covering V′ = V ×U U′ → V in Xaff
pro-ét. Therefore F (U) → F (U′) is injective, i.e. F is

separated.
If s ∈ F (U′) is such that its two images in F (U′ ×U U′) coincide, then the same holds for

sV′ ∈ F (V′) for all V → U with V ∈ Xaff
pro-ét. Hence for all V, there exists a unique tV ∈ F (V)

with tV |V′ = sV′ . The tV are compatible with the transition maps, hence define a unique element
t ∈ F (U). For any V′ → U′ with V′ ∈ Xaff

pro-ét (so not just the ones obtained by base change), we

have sV′ |V′′ = tV′ |V′′ (both equal to sV′′ ), therefore sV′ = tV′ , so t maps to s ∈ F (U′). Therefore
F is a sheaf on Xpro-ét,aff. �

2.3 Examples of sheaves

Proposition 2.8 ([Bhatt-Scholze, Lem. 4.2.12]). Let T be any topological space, and let X be a scheme.
Consider the presheaf FT on Xpro-ét mapping U to HomTop(U, T). Then FT is a pro-étale sheaf.

Proof. It is clear that FT is a Zariski sheaf. Therefore it remains to check that the sheaf property
holds for FT for every pro-étale covering ϕ : V → U in Xpro-ét,aff.

In other words, we need to show that if g : V → T is a continuous map such that gπ1 =
gπ2 : V ×U V → T, then there exists a unique continuous map f : U → T such that g = f ϕ.
As ϕ is surjective, there is at most one such f . By checking on fibres, we see that the natural
map |V ×U V| → |V| ×|U| |V| is surjective, therefore there is a unique map f : U → T such that
g = f ϕ. Note that ϕ is universally submersive by [SP,02JY], therefore a subset U′ ⊆ U is open if
and only if ϕ−1U is. Therefore f is continuous, as desired. �

3 Exactness of sequences of sheaves

We now give criteria for a sequence F → G → H of abelian pro-étale sheaves to be exact.

3.1 Classical stalks

We repeat the construction of stalks, in the same way as for the étale site, but then for the pro-
étale site.

Definition 3.1. Let x ∈ X be a geometric point. A pro-étale neighbourhood (U, u) of X is a weakly
étale morphism (U, u)→ (X, x) of geometrically pointed schemes.

The category of pro-étale neighbourhoods turns out to be cofiltered again, and we can define
the stalk Fx of a pro-étale sheaf F on X in the usual way, as the colimit of all F (U) for all
pro-étale neighbourhoods (U, u) of x. As usual, the stalk only depends on the image of the
geometric point.

We can define this stalk in an alternative way.
6



Proposition 3.2 ([SP,0993]). Let X be a scheme, let x be a geometric point of X, and let F be a pro-étale
sheaf on X. Then Spec(OX,x) ∈ Xpro-ét, and there is a canonical isomorphism

F
(
Spec(OX,x)

)
= Fx,

which is functorial in F .

This follows from a theorem of Olivier which states that any local morphism of local rings
from a strictly henselian ring is an isomorphism.

Classical stalks are not enough for our purposes, though, as the following example shows.

Example 3.3. Let A be an abelian group, and let X be the spectrum of a separably closed field. By
Proposition 2.8, both F given by F (U) = HomTop(U, A) and G given by G(U) = HomSet(U, A)
are pro-étale sheaves on X. Consider their quotient Q = G/F . Then its unique stalk Q(X) is
zero.

However, Q is non-zero, since otherwise F = G, and we have F (U) 6= G(U) for any U ∈
Xaff

pro-ét non-discrete.

3.2 w-contractible rings
A way to remedy the failure in the previous example is the use of so-called w-contractible rings.
As we will see below, w-contractibility is like an injectivity condition.

Definition 3.4. A ring A is w-contractible if every faithfully flat, weakly étale ring map A → B
has a retraction (i.e. an A-algebra map B→ A).

This class of objects extends that of étale local rings.

Lemma 3.5. Let A be a strictly henselian local ring. Then A is w-contractible.

Proof. Let A → B be weakly étale and faithfully flat. Then there exists a prime q of B such that
its inverse image is maximal in A. By Olivier’s theorem, the composition A → B → Bq is an
isomorphism of A-algebras. �

Proposition 3.6. Let A be a ring, and let T = Spec A. The following are equivalent.
(a) A is w-contractible;
(b) for any pro-étale covering of T, there exists a finite partition of open and closed subschemes of T

refining it;
(c) the following holds;

• T is w-local (i.e. the set T0 ⊆ T of closed points is closed, and the map T0 → π0(T) to the set
of connected components of T is a bijection);
• T0 is extremally disconnected (i.e. the closure of an open subset of T0 is open);
• for all maximal ideals m ⊆ A, its localisation Am is strictly henselian.

Proof. We show that (a) and (b) are equivalent.
Suppose A is w-contractible, and let {Ui → T} be a pro-étale covering. By definition, we can

refine this by a finite pro-étale covering {U′j → T}, we hence get a weakly étale surjective map
f : äj U′j → T of affine schemes. Therefore there exists a section s : T → äj U′j of f . Setting

Tj = s−1U′j gives us the desired partition.
Suppose that for all pro-étale coverings of T, there exists a finite partition of open and closed

subschemes of T refining it. Let U → T be a weakly étale surjective map of affine schemes. Let
{Ti → T} be a finite partition of open and closed subschemes refining U → T, i.e. there exists a
morphism T = äi Ti → U, and this map is a section of U → T. Hence A is w-contractible.

For (c), see [SP,0982]. �
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As usual for objects satisfying an injectivity condition, the existence of enough of them is
hard, if true at all. Therefore we don’t prove the following theorem.

Theorem 3.7 ([Bhatt-Scholze, Lem. 2.4.9]). Let A be a ring. Then there exists a faithfully flat, ind-étale
A-algebra B which is w-contractible.

This gives us a criterion to determine whether sequences of sheaves are exact or not.

Lemma 3.8. Let X be a scheme, and let U ∈ Xpro-ét,aff be a w-contractible object. Then U is weakly
contractible, i.e. for any surjective map F → G of sheaves on Xpro-ét, the section map F (U) → G(U)
is surjective.

Proof. Let s ∈ G(U) be a section. Then there exists a pro-étale covering {Vi → U} of U such that
each s|Vi has a pre-image in F (Vi). By w-contractibility, this covering admits a refinement of the
form U = äi Ui, so therefore every s|Ui has a pre-image ti in F (Ui). But now F (U) = ∏i F (Ui)
and G(U) = ∏i G(Ui), so (ti) is a section of F (U) mapping to s ∈ G(U). �

Theorem 3.9. Let X be a scheme, and let O be a sheaf of rings on Xpro-ét. A sequence

(1) F G H
of O-modules is exact if and only if for all w-contractible objects U of Xpro-ét,aff, the sequence

(2) F (U) G(U) H(U)

is exact.

Remark 3.10. The argument that follows is essentially a formal argument for any site that “has
enough quasi-compact weakly contractible objects”.

Proof. Of course, if (1) is exact, by Lemma 3.8, then for all U ∈ Xaff
pro-ét w-contractible the se-

quence (2) is exact. So suppose that for all U ∈ Xpro-ét,aff w-contractible, (2) is exact.
As (2) is a complex for all U ∈ Xpro-ét,aff w-contractible, then as every object of Xpro-ét admits

a covering by pro-étale affines by Proposition 2.2, hence also by w-contractible objects by Theo-
rem 3.7, it follows that (1) is a complex as well. So let V ∈ Xpro-ét, let s ∈ ker

(
G(V) → H(V)

)
.

We show that it is in the image of F → G.
Let {Ui → V} be a pro-étale covering consisting of w-contractible objects. By assumption,

s|Ui has a pre-image in F (Ui). Therefore it lies in the image of F → G. Hence (1) is exact. �

We finish by stating some corollaries of this.

Corollary 3.11. Let X be a scheme, and let O be a sheaf of rings on Xpro-ét. Let F be any O-module.
Then Hp(Upro-ét,F ) = 0 for all w-contractible U ∈ Xpro-ét,aff and all p ≥ 1.

Corollary 3.12. Let X be a scheme, and let O be a sheaf of rings on Xpro-ét. Let

· · · → F2 → F1 → F0

be a cofiltered diagram of O-modules in which the transition maps are surjective. Then limFi → F0 is
surjective as well. (In other words, the category of O-modules is replete.)

Corollary 3.13. Let X be a scheme, and let O be a sheaf of rings on Xpro-ét. Then products are exact on
the category of O-modules. (I.e. the product of exact sequences of O-modules is exact.)
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