Multiplication by n on elliptic curves over rings

Jinbi Jin
(Universiteit Leiden)

October 26, 2012
Construct a triple of homogeneous polynomials defining multiplication by n on all projective Weierstrass curves over rings.
Results

For Weierstrass elliptic curves over fields: Already known *if we restrict to* affine points \((x : y : 1)\) (see [E])

Result unsuitable for direct generalisation to elliptic curves over arbitrary rings.

But it turns out that we can modify the polynomials to work for all points on elliptic curves over rings.

[E]: Andreas Enge, *Elliptic curves and their applications to cryptography - an introduction*
Introduction
Division polynomials and multiplication by \(n \)
Weierstrass curves over rings
Proof of main theorem

Example: Doubling formula (1/2)

Theorem

Let \(E \) be a Weierstrass curve over a ring \(R \) defined by

\[
y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3,
\]

where \(a_1, a_2, a_3, a_4, a_6 \in R \). Let \(P = (x : y : z) \) be a point on \(E \). Then

\[
2P = (\alpha_2(P) : \beta_2(P) : \gamma_2(P)),
\]

where:
Example: Doubling formula (2/2)

\[a_2 = 2xy^3 + 3a_1x^2y^2 + (a_1^2 - 2a_2)y^3z + (a_1^3 - 3a_1a_2 + 3a_3)xy^2z + (-2a_1^2a_2 + 2a_2^2 - 6a_4)x^2yz \\
+ (a_1a_2^2 - 3a_2a_3 - 3a_1a_4)y^2z^2 + (a_1^2a_2 - a_1^3a_3 - 2a_1a_2a_3 - 4a_1a_2a_4 - 3a_3^2 + 2a_2a_4 - 18a_6)xz^2 \\
+ (-a_1a_2^3 + a_2a_3 + a_2a_4 - 3a_1a_3^2 + 4a_1a_2a_4 - 3a_3a_4 - 9a_1a_6)x^2z \]

\[+ (a_1a_2^2a_3 - a_1^2a_3^2 - 3a_2a_3^2 - a_1a_3a_4 - 3a_1^2a_6 + 2a_4 - 6a_2a_6)yz^3 \\
+ (-a_1a_2a_3^2 - a_2a_3^2a_4 - 2a_1a_3^2a_4 - a_3^3a_6 - 2a_3^2 + a_2a_3a_4 + 4a_1a_2^2 - 3a_1a_2a_6 - 9a_3a_6)xz^3 \\
+ (-a_2a_3^3 + a_1a_3^2a_4 - a_1a_2a_4^2 + 3a_2a_3^2a_6 + 3a_1a_4a_6)z^4 \]

\[\beta_2 = y^4 + a_1xy^3 + (a_1a_2 - 2a_3)y^3z + (a_1^2a_2 - a_2^2 - 3a_1a_3 + 3a_4)xy^2z \\
+ (-2a_1a_2^2 + 6a_1a_4)x^2yz + (a_3^2 - a_1a_2a_3 + a_1^2a_4 - 5a_2a_4 + 18a_6)y^2z^2 \\
+ (a_1a_3^2 - 2a_1a_2a_3 + a_1^3a_4 - a_1a_2^3 + 3a_1a_3^2 - 6a_1a_2a_4 + 3a_3a_4 + 27a_1a_6)xyz^2 \\
+ (-a_2^4 + 2a_1a_2^2a_3 - a_1^2a_2a_4 + 6a_2^2a_4 - 6a_1a_3a_4 + 9a_1^2a_6 - 9a_4^2)x^2z^2 \\
+ (a_2^3a_3 - a_1a_2a_3^2 + a_1^2a_3^2 + 2a_3 - 5a_2a_3a_4 - a_1a_4^2 + 3a_1a_2a_6 + 18a_3a_6)yz^3 \\
+ (a_1^2a_2a_3^2 - a_3^3a_4 + a_1^2a_6^2 + 2a_2^2a_3^2 - a_1a_3^3 - a_3^2a_4 - 2a_2a_4^2 + 6a_1^2a_2a_6 - 6a_3^2a_4 + 3a_2a_4^2 + 9a_2^2a_6 - 27a_4a_6)xz^3 \\
+ (a_1a_2a_3^3 - a_1^2a_3^3a_4 + a_1a_3a_6 - a_3^4 + a_2a_3a_4^2 - 2a_1a_3a_4^2 - a_2^3a_6 + 6a_1a_2a_3a_6 - a_4^2 - 9a_2^2a_6 + 9a_2a_4a_6 - 27a_6^2)z^4 \]

\[\gamma_2 = 8y^3z + 12a_1xy^2z + 6a_1^2x^2yz + (a_1^3 + 12a_3)y^2z^2 + (a_1^4 + 12a_1a_3)xyz^2 + (-a_3^2 + 3a_1^2a_3)x^2z^2 \]

\[+ (a_1^3a_3 + 6a_2^3)yz^3 + (-a_3^3a_4 + 3a_1a_2^3)xz^3 + (-a_3^3a_6 + a_3^3)z^4 \]
Division polynomials and multiplication by n
The generic Weierstrass curve E/K (1/2)

$R = \mathbb{Z}[a_1, a_2, a_3, a_4, a_6, 1/\Delta]$, where Δ is the usual elliptic discriminant.

K: algebraic closure of field of fractions of R.

E: elliptic curve over K defined by

$$y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3.$$

W: affine Weierstrass polynomial, i.e.

$$Y^2 + a_1XY + a_3Y - X^3 - a_2X^2 - a_4X - a_6.$$
Then recall:

\(E(K) \) is an abelian group, with addition given by the chord-and-tangent rule, and with neutral element 0 the point at infinity.

\(K(E) \) is field of fractions of \(K[X, Y]/(W) \), where \(X = x/z \) and \(Y = y/z \).

\(\text{ord}_0(X) = -2, \text{ord}_0(Y) = -3. \)

\(\Lambda : K(E) - 0 \rightarrow K - 0, f \mapsto (X/Y)^{-\text{ord}_0 f} f(0) \) (leading coefficient).
Main reference: [E]

Definition

Let $n \in \mathbb{Z} - 0$. The n-th division polynomial Ψ_n is the unique element of $K(E) - 0$ with divisor $\sum_{P \in E[n]}([P] - [0])$ and leading coefficient n. In addition, we define $\Psi_0 = 0$.

Fact

The division polynomials satisfy the recurrence relation

$$\Psi_{m+n} \Psi_{m-n} = \Psi_{m+1} \Psi_{m-1} \Psi_n^2 - \Psi_{n+1} \Psi_{n-1} \Psi_m^2,$$

where $m, n \in \mathbb{Z}$.

Fact

For all $n \in \mathbb{Z}$, we have $\Psi_n \in R[X, Y]/(W)$.

Multiplication by n on $E/K \ (1/3)$
Define, for $n \in \mathbb{Z} - 0$,

$$
\Phi_n = X \Psi_n^2 - \Psi_{n-1} \Psi_{n+1} \quad \Omega_n = \frac{1}{2 \Psi_n} (\Psi_{2n} - \Psi_n^2 (a_1 \Phi_n + a_3 \Psi_n^2)).
$$

In addition, define $\Phi_0 = \Omega_0 = 1$.

Fact

For all $n \in \mathbb{Z}$, we have $\Phi_n, \Omega_n \in R[X, Y] / (W)$. Moreover, we have $\Lambda \Phi_n = \Lambda \Omega_n = 1$ and $\text{ord}_0 \Phi_n = -2n^2$, $\text{ord}_0 \Omega_n = -3n^2$.
Proposition

Let \(n \in \mathbb{Z} \). Let \(P \in E(K) \) be a point of \(E \) of the form \((x : y : 1)\). Then

\[
nP = (\Phi_n(x, y)\Psi_n(x, y) : \Omega_n(x, y) : \Psi_n^3(x, y))
\]
Want to extend formula to all points.

Solution: homogenise formula with respect to suitable representatives modulo W.

Usual representatives (Y-degree at most 1) are not suitable.

Representatives with X-degree at most 2 are!

Look e.g. at homogenisations of

$$Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6.$$
Let $A_n, B_n, C_n \in R[X, Y]$ be the unique representatives of $\Phi_n \Psi_n, \Omega_n, \Phi^3_n$, resp., with X-degree at most 2.

A_n, B_n, C_n have total degrees $n^2, n^2, n^2 - 1$, resp.

Define $\alpha_n = z^{n^2} A_n, \beta_n = z^{n^2} B_n, \gamma_n = z^{n^2} C_n \in R[x, y, z]_{n^2}$.
Theorem

Let \(n \in \mathbb{Z} \), and let \(P \in E(K) \) be a point. Then

\[
nP = \left(\alpha_n(P) : \beta_n(P) : \gamma_n(P) \right).
\]

Proof.

It suffices to check that \(\beta_n(0) \neq 0 \), which is true as \(\beta_n \in y^n + xR[x, y, z] + zR[x, y, z] \).
Weierstrass curves over rings
Weierstrass polynomials and ring morphisms

A homogeneous Weierstrass polynomial over a ring S is of the form

$$y^2z + a_1xyz + a_3yz^2 - x^3 - a_2x^2z - a_4xz^2 - a_6,$$

where $a_1, a_2, a_3, a_4, a_6 \in S$ are such that $\Delta(a_1, a_2, a_3, a_4, a_6) \in S^\times$.

Hence the data of giving a homogeneous Weierstrass polynomial over S is equivalent to giving a ring morphism $R \rightarrow S$.
Introduction
Division polynomials and multiplication by n
Weierstrass curves over rings
Proof of main theorem

Elliptic curves over rings

Definition

Let S be a ring, and let E be a Weierstrass curve over S given by a homogeneous Weierstrass polynomial W.
The set $E_0(S)$ of S-valued points in homogeneous coordinates is the set of all $(x : y : z) \in S^3$ (up to scaling by a unit of S) satisfying $W(x, y, z) = 0$ and $Sx + Sy + Sz = S$.

Remark

- $E_0(S)$ usually is not the full set of S-valued points (to be defined later), but this is the case when $\text{Pic } S = 1$ (which is the case e.g. when S is semi-local or factorial).
- Full set of S-valued points is an abelian group, but $E_0(S)$ is usually not closed under addition.
Let $S = \mathbb{Z}[\sqrt{-5}]$, and let $K = \mathbb{Q}(\sqrt{-5})$. Consider the Weierstrass curve E over S given by
\[y^2z + xyz + yz^2 = x^3 + 4xz^2 - 6z^3,\]
and the two points
\[P = (9:23:1)\]
\[Q = (3411\sqrt{-5}:26488 + 117\sqrt{-5}:-3645\sqrt{-5})\]

Then $P + Q$ is given (in $E(K)$) by
\[(61028487 + 104922279\sqrt{-5}: 120011054 - 171672039\sqrt{-5}:-127263527)\]

which is not in $E_0(S) \subseteq E(K)$.
However, $E_0(S)$ turns out to be closed under multiplication by n:

Main Theorem

Let $n \in \mathbb{Z}$. Let S be a ring, and let E be a Weierstrass curve over S. Let $P = (x : y : z) \in E_0(S)$. Then

$$nP = (\alpha_n(P) : \beta_n(P) : \gamma_n(P)).$$
Corollary in terms of division polynomials

Corollary

Let $n \in \mathbb{Z}$. Let S be a ring, and let E be a Weierstrass curve over S. Let $P = (x : y : 1) \in E_0(S)$ be an affine S-valued point of E. Then

$$nP = (\Phi_n(x, y) \Psi_n(x, y) : \Omega_n(P) : \Psi_n^3(P)).$$

Question: Is this statement already in the literature?
We want to describe $\mathbb{P}^2(S)$ for a ring S.

Recall:

Definition

Let S be a ring, and let M be an S-module. Then M is called invertible if there exist elements $f_1, \ldots, f_s \in S$ such that $Sf_1 + \cdots + Sf_s = S$, and $M_{f_i} \cong S_{f_i}$ as S_{f_i}-modules.

If M and N invertible, then $M \otimes N$ and $M^\vee = \text{Hom}_S(M, S)$ invertible.

Moreover, $M \otimes M^\vee \cong S$ as S-modules.
Consider 4-tuples \((M, m_0, m_1, m_2)\), where \(M\) is an invertible \(S\)-module, and \(m_0, m_1, m_2 \in M\) such that \(Sm_0 + Sm_1 + Sm_2 = M\).

\((M, m_0, m_1, m_2) \sim (N, n_0, n_1, n_2)\) if there exists an isomorphism \(M \rightarrow N\) of \(S\)-modules mapping \(m_i\) to \(n_i\).

If \(M = S\), then we denote the class of \((M, m_0, m_1, m_2)\) by \((m_0 : m_1 : m_2)\).
The projective plane over rings (3/3)

Proposition

The $\mathbb{P}^2(S)$ is the set of equivalence classes of 4-tuples (M, m_0, m_1, m_2) as described before.

If Pic $S = 1$, then by definition, all invertible S-modules are trivial, so then all points in projective plane are given by homogeneous coordinates.
The set of points of an elliptic curve (1/2)

Definition

Let S be a ring, and let E be a Weierstrass curve over S, given by a homogeneous Weierstrass polynomial W. The set $E(S)$ of S-valued points is the set

$$\left\{(M, m_0, m_1, m_2) \in \mathbb{P}^2(S) : W(m_0, m_1, m_2) = 0 \text{ in } M^\otimes 3\right\}.$$
The set of points of an elliptic curve (2/2)

Let \(S \) be a ring, and let \(E \) be a Weierstrass curve over \(S \).

\(E(S) \) has the structure of an abelian group, with \(0 = (0 : 1 : 0) \) as neutral element. (See [KM])

If \(S \) is a field, this is the group structure we already know.

For an \(S \)-algebra \(T \), the composition \(R \to S \to T \) defines an elliptic curve \(E' \). In this case, \(E(S) \to E'(T) \), \((M, m_0, m_1, m_2) \mapsto (M \otimes_S T, m_0 \otimes 1, m_1 \otimes 1, m_2 \otimes 1) \) is a group homomorphism.

[KM] N. M. Katz, B. Mazur, *Arithmetic moduli of elliptic curves*
Main theorem, full version

Main Theorem

\[
\text{Let } n \in \mathbb{Z}. \text{ Let } S \text{ be a ring, and let } E \text{ be a Weierstrass curve over } S. \text{ Let } P = (M, m_0, m_1, m_2) \in E(S). \text{ Then}
\]

\[
nP = (M \otimes n^2, \alpha_n(m_0, m_1, m_2), \beta_n(m_0, m_1, m_2), \gamma_n(m_0, m_1, m_2)).
\]
Proof of main theorem
Outline of proof

Step 1: Use Theorem of the Cube to show the existence and uniqueness (up to units in R) of homogeneous polynomials of degree n^2 defining multiplication by n on all Weierstrass curves.

Step 2: Show, using the generic Weierstrass curve, that these polynomials can be taken to be $\alpha_n, \beta_n, \gamma_n$.
Suppose for the moment that:

- We know that there exist homogeneous polynomials $\alpha'_n, \beta'_n, \gamma'_n$ that define multiplication by n on all Weierstrass curves.

- We know that they are unique up to scaling by a common unit of R.

Then we will show that $\alpha_n, \beta_n, \gamma_n$ also define multiplication by n.
Recall:

\[R = \mathbb{Z}[a_1, a_2, a_3, a_4, a_6, 1/\Delta] \]

\(K \): algebraic closure of field of fractions of \(R \)

Let \(E \) be the generic Weierstrass curve.

Make a choice of \(\alpha'_n, \beta'_n, \gamma'_n \). Note that \(\alpha'_0 = \gamma'_0 = 0, \beta'_0 \in R^\times \).

Hence assume \(n \neq 0 \). Main idea: view \(\theta_n = \beta_n/\beta'_n \) as rational function on \(E \), and prove that it is in fact in \(R^\times \).
Why does this suffice?

Note that for all \(P \in E(K) \), we have

\[
(\alpha'_n(P) : \beta'_n(P) : \gamma'_n(P)) = nP = (\alpha_n(P) : \beta_n(P) : \gamma_n(P)).
\]

Hence \(\frac{\alpha'_n}{\gamma'_n} = \frac{\alpha_n}{\gamma_n} \) and \(\frac{\beta'_n}{\gamma'_n} = \frac{\beta_n}{\gamma_n} \) as rational functions on \(E \). We deduce that

\[
\frac{\alpha_n}{\alpha'_n} = \frac{\beta_n}{\beta'_n} = \frac{\gamma_n}{\gamma'_n} = \theta_n
\]

as rational functions on \(E \). Hence if \(\theta_n \in R^\times \), then we are indeed done.
Proof of Step 1 implies Step 2 (4/5)

\[\theta_n \text{ is a rational function with neither zeroes, nor poles, since for all } P \in E(K), \]
\[(\alpha'_n(P), \beta'_n(P), \gamma'_n(P)) \neq (0, 0, 0) \]
\[(\alpha_n(P), \beta_n(P), \gamma_n(P)) \neq (0, 0, 0). \]

We deduce that \(\theta_n \in K^\times \).

The homogeneous Weierstrass polynomial \(W \) is monic in \(x \), so \((R[x, y, z]/(W))_{n^2} \) is a free \(R \)-module. As \(\theta_n \) is a quotient of two elements of \((R[x, y, z]/(W))_{n^2} \), which is also a constant, it follows that \(\theta_n \) is in the field of fractions of \(R \).
Proof of Step 1 implies Step 2 (5/5)

Note that R is factorial.

Hence write $\theta_n = f / g$ with $f, g \in R$ having no common factors. Then $f \beta'_n = g \beta_n$ in $(R[x, y, z] / (W))_n^2$. Hence g divides all coefficients of β'_n.

But for $P = (0 : 1 : 0)$, we have

$$(\alpha'_n(P), \beta'_n(P), \gamma'_n(P)) = (0 : 1 : 0),$$

so the y^{n^2}-coefficient of β'_n is a unit. Hence g is a unit as well; $\theta_n \in R - 0$.

This implies that θ_n divides all coefficients of β_n. But $\Lambda \Omega_n = 1$ and $\text{ord}_0 \Omega_n = -3n^2$, so the coefficient of y^{n^2} in β_n is 1. Hence $\theta_n \in R^\times$. \qed
Outline of proof

Step 1: Use Theorem of the Cube to show the existence and uniqueness (up to units in R) of homogeneous polynomials of degree n^2 defining multiplication by n on all Weierstrass curves.

Step 2: Show, using the generic Weierstrass curve, that these polynomials can be taken to be $\alpha_n, \beta_n, \gamma_n$. ← Done!
Recall:

Let A be a ring, and let $f \in A[x_0, \ldots, x_n]$ be homogeneous of degree d. Let $P = \text{Proj } A[x_0, \ldots, x_n]/(f)$.

Then, for all schemes X over $\text{Spec } A$, we identify the set $P(X) = \text{Hom}_{\text{Sch}/A}(X, P)$ with the set of equivalence classes of $(n+2)$-tuples $(\mathcal{L}, s_0, \ldots, s_n)$ such that $f(s_0, \ldots, s_n) = 0 \in \mathcal{L} \otimes A$.

Here, \mathcal{L} is an invertible sheaf on \mathcal{O}_X, and the s_i global sections of \mathcal{L} generating \mathcal{L}.

Elliptic curves over schemes (1/3)
Elliptic curves over schemes (2/3)

Definition

Let S be a scheme. An elliptic curve over S is a triple $(E, \pi, 0)$, where

- $\pi: E \to S$ is a smooth proper morphism of schemes, and all its geometric fibres are connected curves of genus 1;
- $0: S \to E$ is a section of π, the zero section.
Elliptic curves over schemes (3/3)

Now let A be a ring, and let $R \to A$ be a ring morphism. Then the scheme $E = \text{Proj} \ A[x, y, z] / (W)$, together with the section $0 = (0 : 1 : 0) \in E(A)$, is an elliptic curve. We call elliptic curves of this kind Weierstrass curves.

Note that Weierstrass curves over A come with an embedding into \mathbb{P}^2_A.

Fact ([KM])

- Every elliptic curve is, (Zariski) locally on the base, isomorphic to a Weierstrass curve.
- Every elliptic curve is a group scheme.
Main idea to prove existence and uniqueness (up to units in R) of homogeneous polynomials defining multiplication by n on Weierstrass curves:

Consider a *universal point* on a *universal Weierstrass curve*.
Let E be the elliptic curve over R given by

$$y^2z + a_1xyz + a_3yz^2 = x^3 + a_2x^2z + a_4xz^2 + a_6z^3$$

We call E the *universal elliptic curve*. Note that it corresponds to the identity map on R.

Moreover, we call the point $P^\text{univ} \in E(E)$ given by the identity map on E the *universal point* on E. Note that $P^\text{univ} = (\mathcal{O}_E(1), x, y, z)$.

We want to determine nP^univ, as a 4-tuple $(\mathcal{L}, s_0, s_1, s_2)$.

Proof of Step 1 (2/9)
Let μ_n denote the multiplication-by-n map on E.

As the identity on E corresponds to $(\mathcal{O}_E(1), x, y, z)$ in $E(E)$, we know that

$$nP^{\text{univ}} = (\mu_n^* \mathcal{O}_E(1), \mu_n^* s_0, \mu_n^* s_1, \mu_n^* s_2)$$

Hence we want to determine $\mu_n^* \mathcal{O}_E(1)$. We do this using the *Theorem of the Cube*.
Theorem (Theorem of the Cube, [R])

Let X be an abelian scheme (e.g. an elliptic curve) over a scheme S, and let T be any S-scheme. Furthermore, let $a_1, a_2, a_3 \in X_S(T)$, and let \mathcal{L} be an invertible \mathcal{O}_X-module. Then the invertible \mathcal{O}_T-module

$$\bigotimes_{I \subseteq \{1,2,3\}} \left(\sum_{i \in I} a_i \right)^* \mathcal{L}(-1)^{\#I}$$

is trivial.

[R]: M. Raynaud, *Faisceaux amples sur les schémas en groupes et les espaces homogènes*
Proof of Step 1 (5/9)

Expanded:

\[0^* \mathcal{L}\]

\[\otimes a_1^* \mathcal{L}^{-1} \otimes a_2^* \mathcal{L}^{-1} \otimes a_3^* \mathcal{L}^{-1}\]

\[\otimes (a_1 + a_2)^* \mathcal{L} \otimes (a_1 + a_3)^* \mathcal{L} \otimes (a_2 + a_3)^* \mathcal{L}\]

\[\otimes (a_1 + a_2 + a_3)^* \mathcal{L}^{-1}\]
Corollary

Let \(n_1, n_2, n_3 \in \mathbb{Z} \). Then the invertible \(\mathcal{O}_E \)-module

\[
\bigotimes_{I \subseteq \{1,2,3\}} \mu^* \sum_{i \in I} n_i \mathcal{O}_E(1)(-1)^{\# I}
\]

is trivial.
Proposition

Let \(n \in \mathbb{Z} \). Then \(\mu_n^* \mathcal{O}_E(1) = \mathcal{O}_E(n^2) \).

Proof.

For \(n \in \{-1, 0, 1\} \), this is trivial.

Hence it suffices to show that for all positive \(n \), we have \(\mu_n^* \mathcal{O}_E(1) = \mathcal{O}_E(n^2) \); this is done by induction, using the Theorem of the Cube.

To get the case \(n = 2 \), we apply the corollary with \(n_1 = n_2 = 1 \), \(n_3 = -1 \).

To get the case \(n = k + 1 \), we apply the corollary with \(n_1 = k \), \(n_2 = n_3 = 1 \).
Corollary

Let $n \in \mathbb{Z}$. Then there exist homogeneous elements $\alpha'_n, \beta'_n, \gamma'_n$ of degree n^2 in $R[x, y, z]/(W)$ such that

$$nP^{\text{univ}} = (\mathcal{O}_E(n^2), \alpha'_n, \beta'_n, \gamma'_n).$$

These elements are unique up to a common unit of R.
Corollary

Let E be a Weierstrass curve over a ring A, let T be a scheme over A. Furthermore, let $n \in \mathbb{Z}$ and $P = (L, s_0, s_1, s_2) \in E(T)$. Then, for $\alpha'_n, \beta'_n, \gamma'_n$ as in the previous corollary,

$$nP = (L \otimes n^2, \alpha'_n(s_0, s_1, s_2), \beta'_n(s_0, s_1, s_2), \gamma'_n(s_0, s_1, s_2))$$
Step 1: Use Theorem of the Cube to show the existence and uniqueness (up to units in R) of homogeneous polynomials of degree n^2 defining multiplication by n on all Weierstrass curves. ← Done!

Step 2: Show, using the generic Weierstrass curve, that these polynomials can be taken to be $\alpha_n, \beta_n, \gamma_n$. ← Done!
Summary of main results

Theorem

Let $n \in \mathbb{Z}$. Let S be a ring, and let E be a Weierstrass curve over S. Let $P = (M, m_0, m_1, m_2) \in E(S)$. Then

$$nP = (M \otimes n^2, \alpha_n(m_0, m_1, m_2), \beta_n(m_0, m_1, m_2), \gamma_n(m_0, m_1, m_2)).$$

Corollary

Let $n \in \mathbb{Z}$. Let S be a ring, and let E be a Weierstrass curve over S. Let $P = (x : y : z) \in E_0(S)$. Then

$$nP = (\alpha_n(P) : \beta_n(P) : \gamma_n(P)).$$