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1 Notation
For X a ringed space, we denote by K(OX) the homotopy category of all OX-modules, and by
D(OX) the derived category of all OX-modules. If X is a scheme, then we denote by K(QX)
the homotopy category of all quasi-coherent OX-modules, and by D(QX) the derived category
of all quasi-coherent OX-modules. We will often use tacitly that for all qcqs schemes X, the
category D(QX) is equivalent to Dqc(OX). This is Corollary 5.5 of [1], with Remark 5.6 replaced
by qcqs induction to obtain the stronger statement.

2 Preliminaries: Resolutions of unbounded complexes
The bulk from this section will be from the Stacks Project (with references to tags denoted
[SPxxxx], where xxxx is the tag in question), which refers to Spaltenstein’s article with the same
name as this section. The main purpose of this section will be to state some results that we use
as a black box (in the same way we use the existence of injective resolutions as a black box).

2.1 K-injective resolutions, right derived functors

We first recall the notion of a K-injective (right) resolution. See also [SP070G].

Definition 1 ([SP070I]). Let A be an abelian category. A complex I· is K-injective if it satisfies
one of the following equivalent conditions.

• For every acyclic complex M·, HomK(A)(M·, I·) = 0.
• For every quasi-isomorphism M· → N· the map HomK(A)(N·, I·) → HomK(A)(M·, I·)

is a bijection.
• For every complex N· the map HomK(A)(N·, I·)→ HomD(A)(N·, I·) is an isomorphism.

Definition 2. Let A be an abelian category, and let A· be an object of K(A). A K-injective resolu-
tion is a quasi-isomorphism A· → I· in K(A) with I· K-injective.

Theorem 3 (Spaltenstein [4, Lem. 4.3, Thm. 4.5]). Let X be a ringed space. Then any complex
A· ∈ K(OX) admits a K-injective resolution of which each term is injective.

Now given any additive functor F : A → B between abelian categories, and assume that
every object of K(A) admits a K-injective resolution. Then ([SP070K]) we have a right derived
functor RF : D(A)→ D(B), and for any K-injective complex I·, we have RFI· = FI·.

We are most interested in the right derived functors R f∗ : D(OX) → D(OY) for f : X → Y a
morphism of ringed spaces, and RHomOX (M·,−) : D(OX)→ D(OX) for X a ringed space.
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2.2 K-flat resolutions, derived tensor products and pullbacks
Next, we introduce the notion of a K-flat (left) resolution. See [SP06Y7].

Definition 4. Let X be a ringed space. Let M·, N· be two complexes in K(OX). Then their tensor
product is Tot(M· ⊗OX N·).

This induces, for every complex N· in K(OX), a functor K(OX)→ K(OX), M· 7→ Tot(M·⊗OX
N·), which is triangulated (see [SP06Y8]).

Definition 5. Let X be a ringed space. A complex F· in K(OX) is K-flat if it satisfies one of the
following equivalent conditions.

• For any acyclic complex M· in K(OX), the complex Tot(M· ⊗OX F·) is acyclic.
• For all x ∈ X and any acyclic complex M·x in K(OX,x), the complex Tot(M·x ⊗OX,x F·x) is

acyclic.

Fact 6 ([SP079R], [SP06YC]). Let f : X → Y be a morphism of ringed spaces. Let A·, B· be K-flat
complexes in K(OY). Then Tot(A· ⊗OY B·) and f ∗A· are K-flat complexes.

Definition 7. Let X be a ringed space, and let A· be an object of K(OX). A K-flat resolution is a
quasi-isomorphism F· → A· with F· K-flat.

Theorem 8 ([SP06YF]). Let X be a ringed space. Then any complex A· ∈ K(OX) admits a K-flat
resolution.

Now let N· be an object of D(OX), and choose a K-flat resolution F· → N·. Define the
triangulated functor K(OX) → K(OX), M· 7→ Tot(M· ⊗OX F·). It sends quasi-isomorphisms to
quasi-isomorphisms, since F· is K-flat. Hence it induces a triangulated functor

−
L
⊗OX N· : D(OX)→ D(OX)

between derived categories. This functor (up to isomorphism) does not depend on F· → N·

[SP06YG].
We also have a triangulated functor

L f ∗ : D(OY)→ D(OX)

between derived categories, mapping N· to f ∗F·, where F· → N· is a K-flat resolution.
The following are easy exercises now.

Proposition 9. Let f : X → Y, and g : Y → Z be morphisms of ringed spaces. Then L f ∗Lg∗ = L(g f )∗.

Proposition 10. Let f : X → Y be a morphism of ringed spaces, and let M·, N· be objects of D(OY).
Then

L f ∗(M·
L
⊗OY N·) = L f ∗M·

L
⊗OX L f ∗N·.

2.3 Weakly K-injective resolutions, derived pushforward, derived internal Hom
Definition 11. Let X be a ringed space. A complex I· in K(OX) is weakly K-injective if it satisfies
one of the following equivalent conditions.

• For every K-flat acyclic complex M·, HomK(OX)
(M·, I·) = 0.

• For every quasi-isomorphism M· → N·with M·, N· K-flat, the map HomK(OX)
(N·, I·)→

HomK(OX)
(M·, I·) is an isomorphism.

• For every K-flat complex N· the map HomK(OX)
(N·, I·) → HomD(OX)

(N·, I·) is an iso-
morphism.
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Definition 12. Let X be a ringed space, and let A· be a complex in K(OX). A weakly K-injective
resolution is a quasi-isomorphism A· → I· with I· weakly K-injective.

Fact 13. Let f : X → Y be a morphism of ringed spaces. Let I· be a weakly K-injective complex in
K(OX). Then f∗ I· is a weakly K-injective complex in K(OY). Moreover, in D(OY), R f∗ I· = f∗ I·.

Fact 14. Let X be a ringed space. Let M·, N· be two complexes in K(OX), such that either of the
following holds.

• N· is K-injective;
• M· is K-flat and N· is weakly K-injective.

ThenHomOX (M·, N·) is weakly K-injective as well. Moreover, in D(OX), we have RHomOX (M·, N·) =
HomOX (M·, N·).

This has the following nice consequence.

Corollary 15. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. Then Rg∗R f∗ = R(g f )∗.

Another consequence is the following, which we cannot formulate without the use of un-
bounded derived categories.

Corollary 16. Let f : X → Y be a morphism of ringed spaces. Then (L f ∗, R f∗) is adjoint pair of
functors.

Proof. Let A· be an object of D(OY) and let B· be an object of D(OX). Choose a K-flat resolution
F· → A· in K(OY), and a weakly K-injective resolution B· → I· in K(OX). Then we have

HomD(OX)
(L f ∗A·, B·) = HomD(OX)

(L f ∗F·, I·) = HomK(OX)
( f ∗F·, I·)

= HomK(OY)
(F·, f∗ I·) = HomD(OY)

(F·, R f∗ I·)

= HomD(OY)
(A·, R f∗B·),

where we can move between the homotopy category and the derived category since both I·

and f∗ I· are weakly K-injective in their respective homotopy categories, and f ∗F· and F· in
their respective homotopy categories. �

Similarly, we have the following.

Corollary 17. Let X be a ringed space, and let A· be an object of D(OX). Then
(
−

L
⊗OX A, RHomOX (A,−)

)
is an adjoint pair of functors.

3 The dualising complex

Most of this section is Neeman [3].

3.1 Local theory in derived categories of schemes

First, we prove a lemma which allows us to check locally that a morphism in the derived cate-
gory is an isomorphism.

Lemma 18. Let X be a ringed space, and let U be an open cover of X. For U ∈ U , let jU : U → X
denote the open immersion. Then the natural functor D(OX) → ∏U∈U D(OU), A 7→ (j∗U A)U∈U is
conservative.
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Proof. Note that for any ringed space Y, we have a conservative functor H : D(OY)→ ∏i∈ZOY- Mod
defined by cohomology. Hence we have a diagram

D(OX) ∏U∈U D(OU)

∏i∈ZOX- Mod ∏i∈Z,U∈U OU- Mod

HH

where the horizontal arrows are the natural ones. It commutes by locality of cohomology
[SP01E1]. All arrows in this diagram except for possibly the top one are conservative, hence
so is the top one, as desired. �

Proposition 19. Let f : X → Y be a morphism of ringed spaces. Let V ⊆ Y be open, and let U = f−1V.
Let j : V → Y, j′ : U → X be the inclusion morphisms, and let f ′ = f |U . Then j∗R f∗ = R f ′∗(j′)∗.

Proof. Use the identity j∗ f∗ = f ′∗(j′)∗, and the fact that j∗ is exact, and has an exact left adjoint
j!, so it preserves right K-injective resolutions. �

In the same way, we see the following.

Proposition 20. Let X be a ringed space, let U ⊆ X be open, and let j : U → X be the inclusion
morphism. Then j∗RHomOX (−,−) = RHomOX (j∗−, j∗−).

3.2 f !

As an application of the above, we show the following.

Proposition 21. Let f : X → Y be a morphism of qcqs schemes. Then R f∗ : D(QX)→ D(QY) respects
coproducts.

Proof. We need to show that for any collection Aλ of objects in D(QX), the natural map⊕
R f∗Aλ R f∗

(⊕
Aλ

)
is an isomorphism. By the previous, we may check this locally, so we assume that Y = Spec R
is affine.

We proceed by qcqs induction. First note that for U ⊆ X open affine, say U = Spec S, then
the category of quasi-coherent OU-modules is equivalent to that of S-modules, and f∗ sends an
S-module to its restriction as an R-module. This respects coproducts.

Now suppose that for U, V ⊆ X are quasi-compact open subsets such that our claim is true
for U, V, and U ∩V. Then, for all objects A of D(QU∪V), the Mayer-Vietoris sequence

0 ( f |U∪V)∗A ( f |U)∗A|U ⊕ ( f |V)∗A|V ( f |U∩V)∗A|U∩V 0

induces a Mayer-Vietoris triangle T(A)

R( f |U∪V)∗A R( f |U)∗A|U ⊕ R( f |V)∗A|V R( f |U∩V)∗A|U∩V R( f |U∪V)∗A[1].

Moreover, we have, for any collection Aλ of objects of D(QU∪V), a morphism of triangles⊕
T(Aλ) T

(⊕
Aλ

)
of which two of the arrows are isomorphisms by assumption. Hence the third,⊕

R f∗Aλ R f∗
(⊕

Aλ

)
is an isomorphism as well, as desired. �
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Corollary 22. Let f : X → Y be a morphism of qcqs schemes. Then R f∗ : D(QX) → D(QY) has a
right adjoint f ! : D(QY)→ D(QX).

Under some additional assumptions, this right adjoint f ! also commutes with coproducts.
The key results, which we will use as a black box, are the following.

Definition 23. Let X be a ringed space. A strictly perfect complex is a bounded complex of finite
free OX-modules. A perfect complex is a complex A ∈ K(OX) locally quasi-isomorphic to a
strictly perfect complex.

Theorem 24. Let X be a qcqs scheme. Then the compact objects of D(QX) are precisely those quasi-
isomorphic to perfect complexes.

Theorem 25 (Lipman and Neeman [2, Ex. 2.2]). Let f : X → Y be a flat proper morphism of qcqs
schemes, that is locally of finite presentation. Then R f∗ : D(QX) → D(QY) sends perfect complexes to
perfect complexes.

The fact that f ! commutes with coproducts in the situation above now follows from the fol-
lowing general statement.

Theorem 26. Let S be a compactly generated triangulated category, and let T be any triangulated
category. Let F : S → T be a triangulated functor respecting coproducts, and let G be its right adjoint.
Let S be a generating set for S consisting of compact elements. Then G respects coproducts if and only if
for all s ∈ S, F(s) is a compact object of T .

Proof. First suppose G respects coproducts, and let s ∈ S. Then, for any collection Aλ of objects
of T ,

HomT
(

F(s),
⊕

Aλ

)
= HomS

(
s, G

(⊕
Aλ

))
= HomS

(
s,
⊕

G(Aλ)
)

=
⊕

HomS
(
s, G(Aλ)

)
=
⊕

HomT
(

F(s), Aλ

)
,

hence F(s) is compact.
Conversely, suppose that F(s) is compact for all s ∈ S. Moreover, let Aλ be a collection of

objects in T . Then for all s ∈ S, we have

HomS

(
s, G

(⊕
Aλ

))
= HomT

(
F(s),

⊕
Aλ

)
=
⊕

HomT
(

F(s), Aλ

)
=
⊕

HomS
(
s, G(Aλ)

)
= HomS

(
s,
⊕

G(Aλ)
)

,

i.e. the natural transformation

ϕ : HomS
(
−,
⊕

G(Aλ)
)

HomS
(
−, G

(⊕
Aλ

))
is such that ϕ(s) is an isomorphism for all s ∈ S.

Considering the distinguished triangle⊕
G(Aλ) G

(⊕
Aλ

)
Z

⊕
G(Aλ)[1],
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we see that HomS (s, Z) = 0 for all s ∈ S. Since S generates S , it follows that Z = 0, hence⊕
G(Aλ)→ G

(⊕
Aλ

)
is an isomorphism. �

Corollary 27. Let f : X → Y be a flat proper morphism of qcqs schemes, that is locally of finite presen-
tation. Then f ! respects coproducts.

3.3 Projection formula

Let f : X → Y be a morphism of schemes. Let A be an object of D(OX), and let B be an object
of D(OY). Consider the counit L f ∗R f∗A → A of the adjoint pair (L f ∗, R f∗) of functors. This
gives a morphism

L f ∗(B
L
⊗OY R f∗A) L f ∗B

L
⊗OX L f ∗R f∗A L f ∗B

L
⊗OX A,

hence by adjunction a morphism

B
L
⊗OY R f∗A R f∗(L f ∗B

L
⊗OX A),

functorial in both A and B.

Proposition 28 (Projection formula). Let f : X → Y be a morphism of qcqs schemes. Let A be an
object of D(QX), and let B be an object of D(QY). Then the natural morphism

B
L
⊗OY R f∗A R f∗(L f ∗B

L
⊗OX A)

is an isomorphism.

Proof. We check this locally on Y, so assume that Y is affine, so that X is a qcqs scheme. For a
fixed object A of D(QX), we obtain a natural transformation

ϕA : −
L
⊗OY R f∗A R f∗

(
L f ∗(−)

L
⊗OX A

)
of functors D(QY) → D(QY). As X is qcqs, R f∗ respects coproducts, and as derived tensor
products and L f ∗ are left adjoints, they respect coproducts as well. Hence both functors respect
coproducts.

Let R be the full subcategory of D(QY) consisting of all B[n] such that ϕA
(

B[n]
)

is an iso-
morphism. By the above, we know thatR is closed under coproducts.

We show that OY is an object of R. Note that OY[n] is K-flat in D(QY), hence L f ∗OY[n] =

f ∗OY[n] = OX [n]. The complex OX [n] is K-flat in D(QX), so we deduce that OY[n]
L
⊗OY

R f∗A = R f∗A[n] and R f∗
(
OX [n]

L
⊗OX A

)
= R f∗A[n]. By construction, the morphism

L f ∗R f∗A[n] L f ∗
(
OY[n]

L
⊗OY R f∗A

)
L f ∗OY[n]

L
⊗OX A A[n]

induced by adjunction, is the counit of adjunction, hence our original morphism R f∗A[n] →
R f∗A[n] is the identity.

Now note that R f∗, L f ∗,
L
⊗OX ,

L
⊗OY are triangulated functors, so both of our functors are tri-

angulated as well, hence R is closed under triangles. Since {OY[n]} generates D(QY), it hence
follows thatR = D(QY), as desired. �
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3.4 The dualising complex

Let f : X → Y be a morphism of qcqs schemes. Let B and C be objects of D(QY). Consider
the counit R f∗ f !C → C of the adjoint pair (R f∗, f !) of functors. This gives by the projection
formula, a morphism

R f∗(L f ∗B
L
⊗OX f !C) B

L
⊗OY R f∗ f !C B

L
⊗OY C,

and by adjunction, we get a morphism

L f ∗B
L
⊗OX f !C f !(B

L
⊗OY C),

functorial in both B and C.

Theorem 29. Let f : X → Y be a flat proper morphism of qcqs schemes, that is locally of finite presen-
tation. Then for all objects B, C of D(QY), the natural map

ϕ : L f ∗B
L
⊗OX f !C f !(B

L
⊗OY C)

is an isomorphism.

Proof. Let B be a perfect complex in D(QY). Let B∨ = RHomOY (B,OY) be its dual. By

[SP08DQ], it is perfect as well, (B∨)∨ = B, and RHomOY (B, D) = B∨
L
⊗OY D for all objects

D of D(QY). Then L f ∗(B∨) = (L f ∗B)∨, by applying [SP08DM] locally. We show that the natu-

ral map L f ∗B
L
⊗OX f !C → f !(B

L
⊗OY C) is an isomorphism. For all objects A of D(QX), we have

(using that B and L f ∗B are perfect complexes)

HomD(QX)
(A, L f ∗B

L
⊗OX f !C) = HomD(QX)

(
A, RHomOX (L f ∗B∨, f !C)

)
= HomD(QX)

(A
L
⊗OX L f ∗B∨, f !C)

= HomD(QY)

(
R f∗(A

L
⊗OX L f ∗B∨), C

)
= HomD(QY)

(R f∗A
L
⊗OY B∨, C)

= HomD(QY)
(R f∗A, B

L
⊗OY C)

= HomD(QX)

(
A, f !(B

L
⊗OY C)

)
and by construction, this identification is given by the given natural map.

Now the functors f !(−
L
⊗OY C) and L f ∗ −

L
⊗OX f !C are triangulated functors respecting co-

products. Hence the full subcategory of D(QY) of objects B such that the natural map ϕ is an
isomorphism is triangulated, contains all the compact objects, and is closed under coproducts,
so it must be D(QY) itself, as desired. �

This motivates the following definition.

Definition 30. Let f : X → Y be a flat proper morphism of qcqs schemes that is locally of finite
presentation. Then the dualising complex is f !OY.
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4 Grothendieck-Serre duality

First let f : X → Y be a morphism of ringed spaces, and let A, B be objects of D(OX). Let A→ I,
B→ J be K-injective resolutions. Then we have a natural map

R f∗RHomOX (A, B) = f∗HomOX (I, J) HomOY ( f∗ I, f∗ J) = HomOY (R f∗A, R f∗B).

Now suppose that f : X → Y is a flat proper morphism of qcqs schemes that is locally of
finite presentation. Let A be an object of D(QX) and B be an object of D(QY). Then using the
counit R f∗ f !B→ B, we get a natural map

R f∗RHomOX (A, f !B) RHomOY (R f∗A, R f∗ f !B) RHomOY (R f∗A, B).

Theorem 31. Let f : X → Y be a flat proper morphism of qcqs schemes that is locally of finite presenta-
tion. Let A be an object of D(QX) and let B be an object of D(QY). Then the natural map

R f∗RHomOX (A, f !B) RHomOY (R f∗A, B)

is an isomorphism.

Before we prove this theorem, we define the following.

Definition 32. Let X be a ringed space, and let E be an OX-module. Let Z ⊆ X be a closed
subset, let U = X − Z, and let j : U → X be the inclusion. Then the OX-module ΓZ(E) is the
kernel of the unit E → j∗ j∗E of adjunction.

By the snake lemma, ΓZ is a left exact functor, hence we can compute its right derived functor
RΓZ (also called the local cohomology functor) using K-injective resolutions. As for every injective
OX-module E , the sequence

0 ΓZE E j∗ j∗E 0

is exact, and any complex in K(OX) admits a K-injective resolution with injective terms, we
obtain a distinguished triangle

RΓZ A A Rj∗ j∗A RΓZ A[1]

in D(OX) which is functorial in A.
We use the local cohomology functor to show the following.

Lemma 33. Let f : X → Y be a flat proper morphism of qcqs schemes that is locally of finite presentation.
Let V ⊆ Y be a quasi-compact open subset, let U = f−1V, let j : V → Y and j′ : U → X be the
corresponding open immersions, and let f ′ = f |U . Then (j′)∗ f ! = ( f ′)! j∗.

Proof. First note that j∗R f∗ = R f ′∗(j′)∗. So taking right adjoints, we find that f !Rj∗ = Rj′∗( f ′)!,
and hence that (j′)∗ f !Rj∗ j∗ = (j′)∗Rj′∗( f ′)! j∗. As (j′)∗ j′∗ is the identity functor on K(OU), it
follows that (j′)∗Rj′∗ is the identity functor on D(QU). We deduce that (j′)∗ f !Rj∗ j∗ = ( f ′)! j∗.

It now suffices to show that, functorially in A (in D(QY)), the unit A → Rj∗ j∗A induces an
isomorphism (j′)∗ f ! A → (j′)∗ f !Rj∗ j∗ in D(QY). It suffices to show that (j′)∗ f !RΓZ = 0. Let
B be an object of D(QY). Then RΓZB has cohomology supported on Z by definition. Hence

f !RΓZB = L f ∗RΓZB
L
⊗OX f !OY has cohomology supported on f−1Z, i.e. it becomes zero after

applying (j′)∗ to it. �
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Proof of Theorem 31. By the previous lemma, after applying H0(V,−) for all quasi-compact open
subsets V ⊆ Y, we obtain an isomorphism. Hence it induces isomorphisms on cohomology, as
desired. �

We have a variant for bounded below complexes as well, although its proof is much harder
due to lack of derived pullbacks, so we will only state this version here.

Theorem 34. Let f : X → Y be a flat proper morphism of qcqs schemes that is locally of finite presen-
tation. Let A be an object of D+(QX) and let B be an object of D+(QY). Then R f∗ : D+(QX) →
D+(QY) has a right adjoint f ! and the natural map

R f∗RHomOX (A, f !B) RHomOY (R f∗A, B)

is an isomorphism.
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